Аксоны и дендриты у какой ткани

Нервная система выполняет ряд важных функций:

  • обеспечивает связь организма с окружающим миром;
  • управляет работой всех органов; 
  • координирует функционирование всех систем органов, обеспечивая их согласованную работу.

Нервная ткань

Нервная ткань отличается от других тканей нашего организма тем, что обладает особыми свойствами — возбудимостью и проводимостью. Эти свойства нервной ткани обусловлены особенностями её строения.

В состав нервной ткани входят клетки двух видов. Основные функции выполняют нейроны, а клетки-спутники (клетки нейроглии) служат опорой и обеспечивают обмен веществ.

Нервная ткань_Nerve tissue_Nervu audi.png

Рис. (1). Нервная ткань

Функции нейронов: генерирование и передача нервных импульсов; обработка и хранение поступающей информации.

Нервный импульс — это волна возбуждения (биоэлектрическая волна), распространяющаяся по нервным клеткам.

Нейрон — основная клетка  нервной ткани. Он имеет тело и отростки двух типов. В теле нейрона располагается ядро и органоиды, а по отросткам передаются нервные импульсы.

Дендриты — это отростки, по которым нервные импульсы передаются к телу нейрона. Эти отростки сильно ветвятся. У нейрона может быть несколько дендритов.

Аксон — это отросток, по которому импульсы передаются от тела клетки. Аксон обычно ветвится только на конце. У каждого нейрона всего один аксон.

Нервная клетка.png

Рис. (2). Строение нейрона

Аксоны часто окружены оболочкой из жироподобного вещества миелина. Это вещество имеет белый цвет. Скопления миелинизированных аксонов образуют белое вещество головного и спинного мозга. Тела нервных клеток и дендриты не покрыты миелином. Они серого цвета, а их группы составляют серое вещество центральной нервной системы.

Передача нервных импульсов с одной клетки на другую происходит в синапсах.

Синапс — это место контакта между двумя нейронами или между нейроном и  клеткой рабочего органа.

Главными элементами синапса являются мембраны двух клеток (пресинаптическая и постсинаптическая мембраны) и пространство между ними (синаптическая щель).

Нервная клетка_2.png

Рис. (3). Строение синапса

В аксоне пресинаптического нейрона вырабатывается медиатор — особое вещество, с  помощью которого происходит передача нервного импульса.

Под действием нервного импульса медиатор выделяется в синаптическую щель. Рецепторы постсинаптической мембраны реагируют на его появление и генерируют возникновение нервного импульса в следующем нейроне. Так в синапсе происходит химическая передача возбуждения с одной клетки на другую.

Нейроны различаются по своему строению и выполняемым функциям.

Виды нейронов.png

Рис. (4). Виды нейронов

По выполняемым функциям выделяют три типа нейронов.

Чувствительные (сенсорные) нейроны проводят информацию от органов в мозг. Тела таких нейронов находятся в нервных узлах вне центральной нервной системы.

Другая группа нейронов передаёт информацию от головного и спинного мозга к органам. Это двигательные (моторные) нейроны. Их тела находятся в сером веществе центральной нервной системы, а аксоны находятся за пределами ЦНС.

Третий вид нейронов осуществляет связь между чувствительными и двигательными нейронами. Это вставочные нейроны, они находятся в головном и спинном мозге.

Скопление нейронов в головном или спинном мозге называют ядром.

Типы нейронов.png

Рис. (5). Типы нейронов и синапсы

Связь между органами и центральной нервной системой осуществляется через нервы.

Нерв — это орган, в состав которого входят пучки нервных волокон, покрытые соединительнотканной оболочкой.

Нерв.png

Рис. (6). Нерв

Нервы выполняют проводниковую функцию. Они связывают головной и спинной мозг с кожей, органами чувств и с внутренними органами.

Нервы бывают чувствительныедвигательные и смешанные.

Чувствительные нервы проводят нервные импульсы от рецепторов в мозг. В их состав входят дендриты чувствительных нейронов.

Двигательные нервы состоят из аксонов двигательных нейронов. Их функция — проведение импульсов от мозга к рабочим органам.  

Смешанные нервы образованы чувствительными и двигательными волокнами и способные проводить импульсы как к ЦНС, так и от ЦНС.

Нервные сплетения представлены сетчатыми скоплениями нервных волокон разных нервов, связывающих ЦНС с внутренними органами, скелетными мышцами и кожей.

Наиболее известное солнечное сплетение находится в брюшной полости.

Источники:

Рис. 1. Нервная ткань https://image.shutterstock.com/image-photo/mammalian-nervous-tissue-under-microscope-600w-74170234.jpg

Рис. 2. Строение нейрона  https://image.shutterstock.com/image-vector/education-chart-biology-nerve-cell-600w-661087429.jpg

Рис. 3. Строение синапса https://image.shutterstock.com/image-illustration/gap-between-two-nerve-cells-600w-1284912691.jpg

Рис. 4. Виды нейронов https://image.shutterstock.com/image-illustration/different-kinds-neurons-scheme-structure-600w-138356969.jpg

Рис. 5. Типы нейронов и синапсы  © ЯКласс

Рис. 6. Нерв https://image.shutterstock.com/image-illustration/nerve-structure-anatomy-600w-1041115012.jpg

ОБЩАЯ ГИТОЛОГИЯ — НЕРВНАЯ ТКАНЬ

Общая информация

Нервная ткань – это система взаимосвязанных нервных клеток и нейроглии,
обеспечивающих специфические функции восприятия раздражений,
возбуждения, выработки импульса и его передачи. Она является основой
строения органов нервной системы, обеспечивающих регуляцию всех тканей
и органов, их интеграцию в организме и связь с окружающей средой.

Типы клеток

  • Нервные клетки

Основные структурные компоненты нервной ткани, выполняющие специфическую функцию

  • Глиальные клетки

Обеспечивают существование и функционирование нервных клеток, осуществляя опорную, трофическую, разграничительную, секреторную и защитную функции

Глиоциты

Количество: в 5-10 раз больше, чем нервных клеток.
Функции: опорная, стромальная, трофическая, защитная, всасывательная имвыделительная

Форма: призматическая.
Что выстилают? желудочки головного мозга и центральный канал спинного мозга.
Они образуют эпендиму. Между соседними клетками плотные соединения отсутствуют. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости.

Танициты — клетки, базальная поверхность которых имеет длинный отросток, пронизывающий все вещество мозга и на его поверхности образующий отграничительную глиальную мембрану. Многочисленны в дне III желудочка, передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза.

Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость (ликвор)

Эпендимоциты

Эпендимоциты

Волокнистые (фиброзные)

Локализуются в белом
веществе ЦНС

Имеют тонкие длинные
слабоветвящиеся отростки,
которые на концах
разветвляются и формируют
отграничительные мембраны.

Протоплазматические

Локализуются в сером
веществе ЦНС

Имеют многочисленные короткие
разветвления, широкие отростки,
часть которых окружает кровеносные
капилляры, участвуют в образовании
гематоэнцефалического барьера;
также отростки изолируют синапсы.
По отросткам переносятся из крови к
нейронам питательные вещества.
Функции: трофическая, защитная
(иммунобиологическая защита)

Астроциты

Протоплазматические астроциты

Волокнистые (фиброзные) астроциты

Олигодендроциты

Микроглия

Ветвистая микроглия

Представляет собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов. Клетки микроглии характеризуются небольшими размерами, тела их имеют продолговатую форму.

Имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах. В периферической нервной системе олигодендроциты представлены нейролеммоцитами, которые образуют оболочки вокруг отростков нейронов, и мантийными клетками, окружающими тела нейронов.

Олигодендроциты

Функция: защита от инфекции и повреждения, удаление продуктов разрушения нервной ткани.

Ветвистая микроглия

Встречается как в сером, так и в
белом веществе центральной
нервной системы. В цитоплазме
клеток реактивной микроглии
присутствуют плотные тельца,
липидные включения, лизосомы.

Реактивная микроглия

Формируется вследствие
активации покоящейся
микроглии при травмах
центральной нервной системы.

Реактивная микроглия

Нейроны

Эффекторные
(эфферентные)
нейроны

Специализированные клетки нервной системы, ответственные за получение, обработку и передачу сигнала (на: другие нейроны, мышечные или секреторные клетки). Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами.

Нейроны

Тело клетки содержит крупное светлое ядро с I-2 ядрышками, в цитоплазме содержатся все органеллы, особенно канальцы гранулярной ЭПС. Рибосомы образуют скопления – глыбки базофильного вещества (нет в аксоне и аксональных холмиках) по всей цитоплазме, в них идет синтез всех необходимых веществ, которые от тела транспортируются по отросткам.

Дендриты представляют собой истинные выпячивания тела клетки. По дендритам распространяются импульсы к телу нейрона. Они содержат те же органеллы, что и тело клетки: глыбки хроматофильной субстанции, митохондрии, большое количество микротрубочек и нейрофиламентов.

Аксон – это отросток, по которому импульс передается от тела клетки. Он содержит митохондрии, нейротубулы и нейрофиламенты, а также гладкую эндоплазматическую сеть.

Рефлекторная дуга

В зависимости от функции различают три типа нейронов:

Ведущую роль в образовании и проведении нервного импульса выполняет плазмолемма нейронов. При действии раздражителя в зоне воздействия происходит волна деполяризации распространяется по плазмолемме.

Чувствительные
(афферентные)
нейроны

Образуют 1-ое звено рефлекторной дуги (спинномозговые узлы). Длинный дендрит идет на периферию и там заканчивается нервным окончанием, а короткий аксон в соматической рефлекторной дуге поступает в задние рога спинного мозга. Афферентный нейрон преобразует раздражение в нервный импульс.

Вставочные
нейроны

Располагаются в спинном и головном мозге; второе звено рефлекторной дуги, отвечает за передачу информации.

Передают информацию на рабочие клетки. Имеют короткие разветвленные дендриты и длинный аксон, который достигает скелетное мышечное волокно и через нервно-мышечный синапс передает нервный импульс.

Функция: синтез и секретированные биологически активных веществ, в частности нейромедиаторов.

1 — ядро с эксцентричным ядрышком
2 — зона комплекса Гольджи и накопления нейросекрета (гранулы фиолетового цвета)
3 — хроматофильное в-во Ниссаля

Секреторные нейроны

В цитоплазме таких нейронов и в их аксонах находятся различной величины гранулы нейросекрета, содержащие белок, а в некоторых случаях липиды и полисахариды.
Гранулы нейросекрета выводятся непосредственно в кровь или в мозговую жидкость. Нейросекреты выполняют роль нейрорегуляторов, участвуя во взаимодействии нервной и гуморальной систем интеграции.

Секреторный нейрон

Секреторные нейроны

Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном, так как чаще всего (за исключением чувствительных нервов) в составе нервных волокон находятся именно аксоны. В ЦНС оболочки отростков нейронов образуются отростками олигодендроглиоцитов, а в ПНС — нейролеммоцитами.

Миелиновые нервные волокна

Безмиелиновые нервные волокна

Нервные волокна

Безмиелиновые нервные волокна

Место нахождения: в составе автономной, или вегетативной, нервной системы.
Нейролеммоциты оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи. В нервных волокнах внутренних органов, как правило, в таком тяже имеется не один, а несколько осевых цилиндров (волокна кабельного типа), принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в соседнее.

По мере погружения осевых цилиндров в тяж нейролеммоцитов оболочки последних прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану – мезаксон, на которой как бы подвешен осевой цилиндр. Скорость проведения импульса 1-5 м/с.

Где встречается? в центральной и в периферической нервной системе

Они значительно толще безмиелиновых нервных волокон. Диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее.
Миелиновый слой оболочки такого волокна содержит значительное количество липидов, поэтому при обработке осмиевой кислотой он окрашивается в темно-коричневый цвет. Через определенные интервалы (1-2 мм) видны участки волокна, лишенные миелинового слоя, — это т.н. узловатые перехваты, или перехваты Ранвье.

В процессе миелинизации аксон погружается в желобок на поверхности нейролеммоцита. Образуется двойная складка плазмолеммы нейролеммоцита – мезаксон, который удлиняется, концентрически наслаивается (как бы накручивается) на осевой цилиндр и образует вокруг него плотную слоистую зону – миелиновый слой. Отсутствие миелинового слоя в области узловых перехватов объясняется тем, что в этом участке волокна кончается один нейролеммоцит и начинается другой.

Оболочка аксона (аксолемма) обладает в области перехвата значительной электронной плотностью. Отрезок волокна между смежными перехватами называется межузловым сегментом. Скорость передачи импульса миелиновыми волокнами – 5-120 м/с.

Для миелиновых волокон характерно сальтаторное проведение возбуждения, т.е. прыжками. Между перехватами идет электрический ток, скорость которого выше, чем прохождение волны деполяризации по аксолемме.

Миелиновые нервные волокна

Безмиелиновые нервные волокна

Миелиновые нервные волокна

Нервный импульс доходит до пресинаптической части и активирует синаптические пузырьки. Синаптический пузырек подходит к пресинаптической мембране, сливается с ней и нейромедиатор из синаптического пузырька попадает в синаптическую щель и действует на рецептор постсинаптической мембраны, что вызывает её деполяризацию, которая передается по центральному отростку следующего нейрона.

Аксо-аксональные

Межнейрональные контакты

Межнейрональные контакты

Аксо-соматические

Аксо-дендритические

Синапсы – это структуры, предназначенные для передачи импульса с одного нейрона на другой или на мышечные и железистые структуры.
Синапсы определяют направление проведения импульса. Нервные клетки соединены между собой посредством синапсов.

Эффекторные синапсы – синапсы, которые заканчиваются на рабочих клетках. Нервно-мышечные синапсы образуются на скелетном мышечном волокне; содержат пресинаптическую часть, которая образована конечным терминальным отделом аксона двигательного нейрона и внедряется в скелетное мышечное волокно. А прилежащий участок скелетного мышечного волокна образует постсинаптическую часть. В этой части отсутствуют миофибриллы, но в большом количестве располагаются ядра и митохондрии, а сарколемма формирует постсинаптическую мембрану

Постсинаптическая часть содержит постсинаптическую мембрану, которая содержит высокоспецифичные белковые рецепторы, реагирующие
только на конкретные медиаторы. Между пресинаптической и
постсинаптической частями находится синаптическая щель.

Двигательные нервные окончания – это концевые аппараты аксонов двигательных клеток соматической или вегетативной нервной системы.
При их участии нервный импульс передается на ткани рабочих органов.

Возбуждающие

Содержат возбуждающие
нейромедиаторы
(ацетилхолин, адреналин,
норадреналин,
глютаминовая кислота)

Адренергические

Передача импульса
совершается с помощью
медиатора адреналина

Холинергические

Передача импульса
совершается с помощью
медиатора ацетилхолина

Тормозные

Содержат тормозные
нейромедиаторы
(глицин, ГАМК — гамма
аминомасляная кислота)

СИНАПСЫ

и

Рецепторы

Межнейрональные контакты

Экстерорецепторы

  • слуховые
  • зрительные
  • обонятельные
  • вкусовые
  • осязательные

Интерорецепторы

  • висцеро-рецепторы (сигнализирующие о состоянии внутренних органов)
  • проприорецепторы (рецепторы опорно-двигательного аппарата)

Рецепторы рассеяны по всему организму и воспринимают различные раздражения как из внешней среды, так и от внутренних органов.
Соответственно выделяют две большие группы рецепторов:

В зависимости от специфичности раздражения, воспринимаемого данным видом рецептора, все чувствительные окончания делят на механорецепторы, барорецепторы, хеморецепторы, терморецепторы и некоторые другие.

Инкапсулированные

  • Покрытые соединительной тканной капсулой
  • Тельца Фатера — Пачини

Неинкапсулированные

  • Не покрыты соединительной тканной капсулой
  • Тельца Мейснера

По особенностям строения чувствительные окончания подразделяют на:

Свободные нервные окончания
Состоящие только из конечных ветвлений осевого цилиндра

Воспринимают холод, тепло и боль. Такие окончания характерны для эпителия. В этом случае миелиновые нервные волокна подходят к эпителиальному пласту, теряют миелин, а осевые цилиндры проникают в эпителий и распадаются там между клетками на тонкие терминальные ветви.

Несвободные нервные окончания
Содержащие в своем составе все компоненты нервного волокна, а именно ветвления осевого цилиндра и клетки глии

Регенерация

Нервная клетка сохраняет способность к регенерации при условии сохранения тела нейрона, а отростки и нервные волокна регенерируют примерно со скоростью 1-2 мм в сутки.

Регенерация зависит от места травмы. Как в центральной, так и в
периферической нервной системе погибшие нейроны не восстанавливаются.
Полноценной регенерации нервных волокон в центральной нервной системе
обычно не происходит, но нервные волокна в составе периферических нервов
обычно хорошо регенерируют.
Поврежденные нервные волокна головного и спинного мозга не регенерируют.
Однако при малых травмах центральной нервной системы возможно
частичное восстановление ее функций, обусловленное пластичностью
нервной ткани.

From Wikipedia, the free encyclopedia

Nervous tissue
Peripheral nerve, cross section.jpg

Example of nervous tissue

Blausen 0672 NeuralTissue.png

Cells of nervous tissue

Identifiers
MeSH D009417
Anatomical terminology

[edit on Wikidata]

Nervous tissue, also called neural tissue, is the main tissue component of the nervous system. The nervous system regulates and controls body functions and activity. It consists of two parts: the central nervous system (CNS) comprising the brain and spinal cord, and the peripheral nervous system (PNS) comprising the branching peripheral nerves. It is composed of neurons, also known as nerve cells, which receive and transmit impulses, and neuroglia, also known as glial cells or glia, which assist the propagation of the nerve impulse as well as provide nutrients to the neurons.[1]

Nervous tissue is made up of different types of neurons, all of which have an axon. An axon is the long stem-like part of the cell that sends action potentials to the next cell. Bundles of axons make up the nerves in the PNS and tracts in the CNS.

Functions of the nervous system are sensory input, integration, control of muscles and glands, homeostasis, and mental activity.

Structure[edit]

Nervous tissue is composed of neurons, also called nerve cells, and neuroglial cells. Four types of neuroglia found in the CNS are astrocytes, microglial cells, ependymal cells, and oligodendrocytes. Two types of neuroglia found in the PNS are satellite cells and Schwann cells. In the central nervous system (CNS), the tissue types found are grey matter and white matter. The tissue is categorized by its neuronal and neuroglial components.[2]

Components[edit]

Neurons are cells with specialized features that allow them to receive and facilitate nerve impulses, or action potentials, across their membrane to the next neuron.[3] They possess a large cell body (soma), with cell projections called dendrites and an axon. Dendrites are thin, branching projections that receive electrochemical signaling (neurotransmitters) to create a change in voltage in the cell. Axons are long projections that carry the action potential away from the cell body toward the next neuron. The bulb-like end of the axon, called the axon terminal, is separated from the dendrite of the following neuron by a small gap called a synaptic cleft. When the action potential travels to the axon terminal, neurotransmitters are released across the synapse and bind to the post-synaptic receptors, continuing the nerve impulse.[4]

Neurons are classified both functionally and structurally.

Functional classification:[5]

  • Sensory neurons (afferent): Relay sensory information in the form of an action potential (nerve impulse) from the PNS to the CNS
  • Motor neurons (efferent): Relay an action potential out of the CNS to the proper effector (muscles, glands)
  • Interneurons: Cells that form connections between neurons and whose processes are limited to a single local area in the brain or spinal cord

Structural classification:[5]

  • Multipolar neurons: Have 3 or more processes coming off the soma (cell body). They are the major neuron type in the CNS and include interneurons and motor neurons.
  • Bipolar neurons: Sensory neurons that have two processes coming off the soma, one dendrite and one axon
  • Pseudounipolar neurons: Sensory neurons that have one process that splits into two branches, forming the axon and dendrite
  • Unipolar brush cells: Are excitatory glutamatergic interneurons that have a single short dendrite terminating in a brush-like tuft of dendrioles. These are found in the granular layer of the cerebellum.

Neuroglia encompasses the non-neural cells in nervous tissue that provide various crucial supportive functions for neurons. They are smaller than neurons, and vary in structure according to their function.[4]

Neuroglial cells are classified as follows:[6]

  • Microglial cells: Microglia are macrophage cells that make up the primary immune system for the CNS.[7] They are the smallest neuroglial cell.
  • Astrocytes: Star-shaped macroglial cells with many processes found in the CNS. They are the most abundant cell type in the brain, and are intrinsic to a healthy CNS.[8]
  • Oligodendrocytes: CNS cells with very few processes. They form myelin sheaths on the axons of a neuron, which are lipid-based insulation that increases the speed at which the action potential, can travel down the axon.[5]
  • NG2 glia: CNS cells that are distinct from astrocytes, oligodendrocytes, and microglia, and serve as the developmental precursors of oligodendrocytes[6]
  • Schwann cells: The PNS equivalent of oligodendrocytes, they help maintain axons and form myelin sheaths in the PNS.[5]
  • Satellite glial cell: Line the surface of neuron cell bodies in ganglia (groups of nerve body cells bundled or connected together in the PNS)[9]
  • Enteric glia: Found in the enteric nervous system, within the gastrointestinal tract.[10]

Classification of tissue[edit]

In the central nervous system:[11]

  • Grey matter is composed of cell bodies, dendrites, unmyelinated axons, protoplasmic astrocytes (astrocyte subtype), satellite oligodendrocytes (non-myelinating oligodendrocyte subtype), microglia, and very few myelinated axons.
  • White matter is composed of myelinated axons, fibrous astrocytes, myelinating oligodendrocytes, and microglia.

In the peripheral nervous system:[12]

  • Ganglion tissue is composed of cell bodies, dendrites, and satellite glial cells.
  • Nerves are composed of myelinated and unmyelinated axons, Schwann cells surrounded by connective tissue.

The three layers of connective tissue surrounding each nerve are:[11]

  • Endoneurium. Each nerve axon, or fiber is surrounded by the endoneurium, which is also called the endoneurial tube, channel or sheath. This is a thin, delicate, protective layer of connective tissue.
  • Perineurium. Each nerve fascicle containing one or more axons, is enclosed by the perineurium, a connective tissue having a lamellar arrangement in seven or eight concentric layers. This plays a very important role in the protection and support of the nerve fibers and also serves to prevent the passage of large molecules from the epineurium into a fascicle.
  • Epineurium. The epineurium is the outermost layer of dense connective tissue enclosing the (peripheral) nerve.

Function[edit]

Myelinated axons (right) conduct impulses faster than unmyelinated axons.

The function of nervous tissue is to form the communication network of the nervous system by conducting electric signals across tissue.[13] In the CNS, grey matter, which contains the synapses, is important for information processing. White matter, containing myelinated axons, connects and facilitates nerve impulse between grey matter areas in the CNS.[14]
In the PNS, the ganglion tissue, containing the cell bodies and dendrites, contain relay points for nerve tissue impulses. The nerve tissue, containing myelinated axons bundles, carry action potential nerve impulses.[11]

Clinical significance[edit]

Tumours[edit]

Neoplasms (tumours) in nervous tissue include:

  • Gliomas (glial cell tumors)
Gliomatosis cerebri, Oligoastrocytoma, Choroid plexus papilloma, Ependymoma, Astrocytoma (Pilocytic astrocytoma, Glioblastoma multiforme), Dysembryoplastic neuroepithelial tumour, Oligodendroglioma, Medulloblastoma, Primitive neuroectodermal tumor
  • Neuroepitheliomatous tumors
Ganglioneuroma, Neuroblastoma, Atypical teratoid rhabdoid tumor, Retinoblastoma, Esthesioneuroblastoma
  • Nerve sheath tumors
Neurofibroma (Neurofibrosarcoma, Neurofibromatosis), Schwannoma, Neurinoma, Acoustic neuroma, Neuroma

References[edit]

  1. ^ «Nervous Tissue | SEER Training». training.seer.cancer.gov. Retrieved 5 February 2020.
  2. ^
    «Peripheral Nervous System». Histology and Virtual Microscopy Learning Resource. University of Michigan Medical School. Retrieved 29 January 2015.
  3. ^ Byrne, John; Roberts, James (2004). From Molecules to Networks. California: Academic Press. p. 1.
  4. ^ a b Swenson, Rand. «Review of Clinical and Functional Neuroscience». Dartmouth Medical School. Retrieved 30 January 2015.
  5. ^ a b c d Waymire, Jack. «Organization of Cell Types». Neuroscience Online. The University of Texas Medical School. Retrieved 27 January 2015.
  6. ^ a b Verkhratsky, Alexi; Butt, Arthur (2013). Glial Physiology and Pathaphysiology (PDF) (First ed.). Chinchester, UK: John Wiley & Sons. p. 76. Retrieved 27 January 2015.
  7. ^ Brodal, Per (March 1, 2010). The Central Nervous System: Structure and Function (Fourth ed.). Oxford University Press. p. 19. ISBN 9780199701049. Retrieved 27 January 2015.
  8. ^ Sofroniew, Michael; Vinters, Harry (2009). «Astrocytes: biology and pathology». Acta Neuropathol. 119 (1): 7–35. doi:10.1007/s00401-009-0619-8. PMC 2799634. PMID 20012068.
  9. ^ M, Hanani (2010). «Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function». Brain Research Reviews. 64 (2): 304–27. doi:10.1016/j.brainresrev.2010.04.009. PMID 20441777. S2CID 11833205.
  10. ^ Gershon, Michael; Rothman, Taube (1991). «Enteric Glia». Glia. 4 (2): 195–204. doi:10.1002/glia.440040211. PMID 1827778. S2CID 25988353.
  11. ^ a b c «Neurons and Support Cells». SIU Med. Southern Illinois University School of Medicine. Retrieved 31 January 2015.
  12. ^ Hof, Patrick R.; Kidd, Grahame; Defelipe, Javier; De Vellis, Jean; Gama Sosa, Miguel A.; Elder, Gregory A.; Trapp, Bruce D. (2013). Cellular Components of Nervous Tissue (PDF). RMC faculty. Randolph-Macon College. pp. 41–59. doi:10.1016/b978-0-12-385870-2.00003-2. ISBN 9780123858702. S2CID 14442865. Archived from the original (PDF) on 1 August 2017. Retrieved 20 January 2015.
  13. ^ «Nervous Tissue». Sidwell School. Archived from the original on 12 June 2016. Retrieved 27 January 2015.
  14. ^ Robertson, Sally (November 2010). «What is Grey Matter». News Medical. AZo Network. Retrieved 30 January 2015.

Понравилась статья? Поделить с друзьями:
  • Аксоны и дендриты свойства
  • Аксоны и дендриты какое вещество
  • Аксоны длина форма количество
  • Аксоны дендриты в вегетативных узлах
  • Аксоны двигательных нейронов рисунок