Аксоны клеток зерен направляются куда

1. Тела грушевидных нейронов Пуркинье
2. дендриты грушевидных нейронов
3. аксон грушевидного нейрона
4. корзинчатые нейроны
5. дендриты и
6. аксон корзинчатого нейрона
7. звёздчатый нейрон
8. большие звёздчатые нейроны
9. дендриты большого звёздчатого нейрона
10. аксон большого звёздчатого нейрона
11. зерновидные нейроны (клетки-зёрна)
12. аксон клетки-зерна
13. дендриты клеток-зёрен
14. моховидные нервные волокна

Кора мозжечка различных представителей позвоночных, включая человека, построена по единому плану и состоит из трёх слоёв. При этом их внутренняя структура у некоторых биологических видовможет различаться. Так мозжечок рыб не содержит глубоких ядер, отсутствуют клетки Пуркинье. У других позвоночных внутреннее строение мозжечка схоже с таковым у человека.

На поверхности мозжечка много извилин и бороздок, которые значительно увеличивают её площадь (у взрослого человека — 975—1500 см²). Борозды и извилины создают на разрезе характерную для мозжечка картину «древа жизни». Основная масса серого вещества в мозжечке располагается на поверхности и образует кору. Меньшая часть серого вещества лежит глубоко в белом веществе в виде центральных ядер. В центре каждой извилины имеется тонкая прослойка белого вещества, покрытая слоем серого — корой.

Кора

Кора представлена серым веществом, располагающимся на поверхности мозжечка. Она содержит нервные клетки и глиальные элементы. В ней различают 3 слоя:

  • наружный, или молекулярный (лат. stratum moleculare);
  • ганглионарный (ганглиозный, или слой клеток Пуркинье) (лат. stratum neuronum piriformium);
  • зернистый, или гранулярный (лат. stratum granulosum).

Молекулярный слой

Молекулярный слой содержит два основных вида нейронов: корзинчатые и звёздчатые. Корзинчатые нейроны (лат. neuronum corbiferum) находятся в нижней трети молекулярного слоя. Это неправильной формы мелкие клетки размером около 10-20 мкм. Их тонкие длинные дендриты ветвятся преимущественно в плоскости, расположенной поперечно к извилине. Длинные аксоны клеток всегда идут поперёк извилины и параллельно поверхности над грушевидными нейронами. Они отдают коллатерали, спускающиеся к телам грушевидных нейронов, и совместно с другими волокнами, густо оплетая грушевидные нейроны, формируют на них характерную структуру корзинок нервных волокон (лат. corbus neurofibrarum). Активность аксонов корзинчатых нейронов вызывает торможение грушевидных.

Звёздчатые нейроны (лат. neuronum stellatum) лежат выше корзинчатых и бывают двух типов.

  • Мелкие звёздчатые нейроны снабжены тонкими короткими дендритами и слаборазветвлёнными аксонами, образующими синапсы на дендритах грушевидных клеток.
  • Крупные звёздчатые нейроны в отличие от мелких имеют длинные и сильно разветвлённые дендриты и аксоны. Ветви из аксонов соединяются с дендритами грушевидных клеток Пуркинье и входят в состав так называемых корзинок.

Корзинчатые и звёздчатые нейроны молекулярного слоя представляют собой единую систему вставочных нейронов, передающую тормозные нервные импульсы на дендриты и тела грушевидных клеток Пуркинье.

Ганглионарный слой

Содержит грушевидные нейроны (клетки Пуркинье) (лат. neuronum piriforme). Клетки Пуркинье являются особыми нейронами мозга. Впервые они были описаны чешским анатомом Яном Пуркинье в 1837 году. Выделяются развитым деревом дендритов, расположенному строго перпендикулярно извилинам мозжечка. Дендриты клеток Пуркинье формируют густую сеть, которая пронизывает всю толщу молекулярного слоя, через которую проходят под прямым углом параллельные волокна (аксоны клеток-зёрен). Дендриты клеток Пуркинье покрыты множеством выпячиваний, благодаря которым формируются синаптические связи с параллельными волокнами. Клетки Пуркинье имеют наибольшее, по сравнению с нейронами других отделов мозга, количество синаптических взаимосвязей.

Большие, сферические тела клеток Пуркинье (60х35 мкм) располагаются в один слой (толщина слоя — одна клетка) коры мозжечка, который также называется слоем Пуркинье. Их аксоны, после отделения коллатералей иннервирующих соседние клетки Пуркинье, направляются к клеткам ядер мозжечка. Каждый аксон иннервирует около 1000 нейронов глубоких ядер мозжечка. Клетки Пуркинье являются ГАМКергическими, то есть в виде нейротрансмиттера используют гамма-аминомасляную кислоту (ГАМК) и таким образом осуществляют ингибирующую иннервацию.

Клетки Пуркинье являются основными нейрональными элементами обеспечивающими функционирование мозжечка. Потенциалы действия возникают в них даже при отсутствии внешних стимулов.

Клетки-зёрна, параллельные волокна и клетки Пуркинье с развитой системой дендритов («деревом дендритов»)

Клетки-зёрна, параллельные волокна и клетки Пуркинье с развитой системой дендритов («деревом дендритов»)

Зернистый слой

Очень богат нейронами зернистый слой. Состоит из нейронов трёх типов:

  1. Первым типом клеток этого слоя являются зерновидные нейроны, или клетки-зёрна (лат. neuronum granuloformis). У них небольшой объём (5—8 мкм в диаметре), бедный цитоплазмой перикарион с крупным круглым ядром. В отличие от клеток Пуркинье клетки-зёрна являются одними из самых маленьких и в то же время многочисленных (у человека их количество достигает 50 миллиардов) нейронов мозга. Клетка имеет 3—4 коротких дендрита, заканчивающихся в этом же слое концевыми ветвлениями в виде лапки птицы. Вступая в синаптическую связь с окончаниями проходящих в мозжечок возбуждающих афферентных (моховидных) волокон, дендриты клеток-зёрен образуют характерные структуры, именуемые клубочками мозжечка (лат. glomerulus cerebellaris). Моховидные волокна несут возбуждающие импульсы к клеткам зёрнам, в то время как клетки Гольджи — тормозящие.
    Тонкие, немиелинизированные аксоны клеток-зёрен поднимаются в верхний молекулярный слой коры мозжечка и в нём Т-образно делятся на 2 ветви, ориентированные параллельно поверхности коры вдоль извилин мозжечка. Преодолевая большие расстояния, эти параллельные волокна пересекают ветвления дендритов многих клеток Пуркинье и образуют с ними и дендритами корзинчатых и звёздчатых нейронов синапсы. Таким образом, нейроны клеток-зёрен передают, используя в виде нейротрансмиттера глутамат, полученное ими от моховидных волокон возбуждение, на значительное расстояние грушевидным клеткам Пуркинье.
  2. Вторым типом клеток зернистого слоя мозжечка являются тормозные большие звёздчатые нейроны (лат. neuronum stellatum magnum). Различают два вида таких клеток: с короткими и длинными аксонами. Нейроны с короткими аксонами (клетки Гольджи) (лат. neuronum stellatum breviaxonicum) лежат вблизи ганглионарного слоя. Их разветвлённые дендриты распространяются в молекулярном слое и образуют синапсы с параллельными волокнами — аксонами клеток-зёрен. Аксоны направляются в зернистый слой к клубочкам мозжечка и заканчиваются синапсами на концевых ветвлениях дендритов клеток-зёрен проксимальнее синапсов моховидных волокон. Возбуждение звёздчатых нейронов может блокировать импульсы, поступающие по моховидным волокнам. Немногочисленные звёздчатые нейроны с длинными аксонами (лат. neuronum stellatum longiaxonicum) имеют обильно ветвящиеся в зернистом слое дендриты и аксоны, выходящие в белое вещество. Предполагается, что эти клетки обеспечивают связь между различными областями коры мозжечка.
  3. Третий тип клеток составляют веретеновидные горизонтальные клетки (лат. neuronum fusiformie horizontale). Они встречаются преимущественно между зернистым и ганглионарным слоями, имеют небольшое вытянутое тело, от которого в обе стороны отходят длинные горизонтальные дендриты, заканчивающиеся в ганглионарном и зернистом слоях. Аксоны этих клеток дают коллатерали в зернистый слой и уходят в белое вещество.

Нейрональные взаимосвязи коры мозжечка

Нейрональные взаимосвязи коры мозжечка

Белое вещество

Белое вещество состоит из аксонов нервных клеток, поступающих в мозжечок, и аксонов клеток Пуркинье, идущих к глубоким ядрам мозжечка и вестибулярному ядру Дейтерса. Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами — моховидными и так называемымилазающими волокнами.

Моховидные волокна идут от ядер моста, спинного мозга, вестибулярных ядер и опосредованно через клетки-зёрна оказывают на грушевидные клетки Пуркинье возбуждающее действие. Они заканчиваются в клубочках зернистого слоя мозжечка, где вступают в контакт с дендритами клеток-зёрен. Каждое волокно даёт ветви ко многим клубочкам мозжечка, и каждый клубочек получает ветви от многих моховидных волокон. Таким образом происходит усиление поступающих по моховидным волокнам в мозжечок сигналов (каждое волокно образует синаптические взаимосвязи с 400—600 клетками-зёрнами). Аксоны клеток-зёрен по параллельным волокнам молекулярного слоя передают импульс дендритам грушевидных, корзинчатых, звёздчатых нейронов, больших звёздчатых нейронов зернистого слоя.

Лазающие волокна поступают в кору мозжечка из нижнего ядра оливы. Нижнее ядро оливы располагается в варолиевом мосту и получает информацию из спинного мозга, ствола мозга, коры головного мозга, которую и передаёт в мозжечок. Они пересекают зернистый слой, прилегают к грушевидным нейронам и стелются по их дендритам, заканчиваясь на их поверхности синапсами. Лазящие волокна передают возбуждение непосредственно грушевидным нейронам. Дегенерация грушевидных нейронов ведёт к расстройству координации движений.

Таким образом, возбуждающие импульсы, поступающие в кору мозжечка, достигают грушевидных нейронов Пуркинье или непосредственно по лазающим волокнам, или по параллельным волокнам клеток-зёрен. Торможение — функция звёздчатых нейронов молекулярного слоя, корзинчатых нейронов, а также больших звёздчатых нейронов зернистого слоя (клеток Гольджи). Аксоны двух первых, следуя поперёк извилин и тормозя активность грушевидных клеток, ограничивают их возбуждение узкими дискретными зонами коры. Поступление в кору мозжечка возбуждающих сигналов по моховидным волокнам, через клетки-зёрна и параллельные волокна, может быть прервано тормозными синапсами больших звёздчатых нейронов, локализованными на концевых ветвлениях дендритов клеток-зёрен проксимальнее возбуждающих синапсов.

Глиальные элементы

Кора мозжечка содержит различные глиальные элементы. В зернистом слое имеются волокнистые и протоплазматические астроциты. Ножки отростков волокнистых астроцитов образуют периваскулярные мембраны. Во всех слоях в мозжечке имеются олигодендроциты. Особенно богаты этим клетками зернистый слой и белое вещество мозжечка. В ганглионарном слое между грушевидными нейронами лежат глиальные клетки с тёмными ядрами. Отростки этих клеток направляются к поверхности коры и образуют глиальные волокна молекулярного слоя мозжечка, поддерживающие ветвения дендритов грушевидных клеток (лат. gliofibra sustenans). Микроглия в большом количестве содержится в молекулярном и ганглионарном слоях.

1. Мозжечок Мозжечок располагается над продолговатым мозгом и варолиевым мостом и представляет собой центр равновесия, поддержания мышечного тонуса, координации движений и контроля сложных и автоматически выполняемых двигательных актов. Он образован двумя полушариями с большим числом бороздок и извилин на поверхности и узкой средней частью (червем) и связан с другими частями мозга тремя парами ножек. Серое вещество образует кору мозжечка и ядра, которые залегают в глубине его белого вещества.
Кора мозжечка является нервным центром экранного типа и характеризуется высокой упорядоченностью расположения нейронов, нервных волокон и глиальных клеток. В ней различают три слоя (снаружи внутрь):

  • молекулярный слой, содержащий сравнительно небольшое количество мелких клеток;
  • ганглионарный слой, образованный одним рядом тел крупных грушевидных клеток (клеток Пуркинье);
  • зернистый слой, с большим количеством плотно лежащих клеток.

   

2. Молекулярный слой коры мозжечка Молекулярный слой содержит тела корзинчатых и звездчатых клеток (коротко- и длинноаксонных).
Корзинчатые клетки располагаются во внутренней части молекулярного слоя. Их короткие дендриты образуют связи с параллельными волокнами в наружной части молекулярного слоя, а длинный аксон идет поперек извилины, отдавая через определенные интервалы коллатерали, которые спускаются к телам клеток Пуркинье и, разветвляясь, охватывают их наподобие корзинок, образуя тормозные аксо-соматические синапсы.
Звездчатые клетки — мелкие нейроны, тела которых лежат выше тел корзинчатых клеток. У короткоаксонных звездчатых клеток дендриты образуют связи с параллельными волокнами, а разветвления аксона формируют тормозные синапсы на дендритах клеток Пуркинье. У длинноаксонных звездчатых клеток аксон может участвовать в образовании корзинки вокруг тела клетки Пуркинье.

  3. Ганглионарный слой коры мозжечка Ганглионарный слой содержит лежащие в один ряд тела клеток Пуркинье (грушевидных нейронов), оплетенные коллатералями аксонов корзинчатых клеток («корзинками»).
Клетки Пуркинье (грушевидные нейроны) — крупные клетки с телом грушевидной формы, содержащим хорошо развитые органеллы. От него в молекулярный слой отходят 2-3 первичные (стволовые) дендрита, интенсивно ветвящиеся в плоскости, перпендикулярной направлению извилины, с образованием конечных (терминальных) дендритов, достигающих поверхности молекулярного слоя. На дендритах находятся 60-100 тыс. шипиков — контактных зон возбуждающих синапсов, образуемых параллельными волокнами (аксонами клеток-зерен) и возбуждающих синапсов, образуемых лазящими волокнами.
Аксон клетки Пуркинье отходит от основания ее тела, одевается миелиновой оболочкой, пронизывает зернистый слой и проникает в белое вещество, являясь единственным эфферентным путем его коры. По ходу аксон отдает коллатерали, возвращающиеся в область расположения тел клеток Пуркинье и образующие тормозные синапсы на телах соседних клеток Пуркинье и клеток Гольджи.
Количество клеток Пуркинье заметно снижается при старении — на 20-40 % к 70-90 годам (по сравнению с их числом у 40-50 летних), что, вероятно, служит одной из причин нарушения функции мозжечка у пожилых людей.

  4. Зернистый слой коры мозжечка Зернистый слой содержит близко расположенные тела клеток-зерен, больших клеток-зерен (клеток Гольджи), а также клубочки мозжечка — особые округлые сложные синаптические контактные зоны между моховидными волокнами, дендритами клеток-зерен и аксонами больших клеток-зерен.
Клетки-зерна — наиболее многочисленные нейроны коры мозжечка. Это мелкие нейроны со слабо развитыми органеллами и короткими дендритами, имеющими вид «птичьей лапки», на которых в клубочках мозжечка розетки моховидных волокон образуют многочисленные синаптические контакты. Аксоны клеток-зерен направляются в молекулярный слой, где Т-образно делятся на две ветви, идущие параллельно длине извилины (параллельные волокна), образуя возбуждающие синапсы на дендритах клеток Пуркинье, корзинчатых и звездчатых клеток и больших клеток-зерен. Через дендритное дерево каждой клетки Пуркинье проходит до 200-300 тыс. параллельных волокон, образуя на каждой клетке 60-100 тыс. синапсов (не все волокна образуют синапсы). Аксон каждой клетки-зерна образует связи с дендритами 250-500 клеток Пуркинье.
Большие клетки-зерна (клетки Гольджи) крупнее клеток-зерен, содержат хорошо развитые органеллы. Их аксоны в пределах клубочков мозжечка образуют синапсы на дендритах клеток-зерен, а длинные дендриты поднимаются в молекулярный слой, где ветвятся и образуют связи с параллельными волокнами. Большие клетки-зерна оказывают угнетающее влияние на активность клеток-зерен.
Афферентные волокна коры мозжечка включают моховидные (мшистые) и лазящие.
Моховидные (мшистые) волокна мозжечка проходят в составе спинно- и мостомозжечковых путей и, разветвляясь, заканчиваются расширениями (розетками) в особых контактных зонах — клубочках мозжечка, образуя синаптические контакты с дендритами клеток-зерен, на которых оканчиваются также и аксоны больших клеток-зерен. Клубочки мозжечка снаружи не полностью окружены плоскими отростками астроцитов.
Лазящие (лиановидные) волокна мозжечка идут в составе оливомозжечковых путей и проникают в кору из белого вещества, проходя через зернистый слой до ганглионарного и стелясь по телам и дендритам клеток Пуркинье, на которых они заканчиваются возбуждающими синапсами. Коллатеральные ветки лазящих волокон образуют синапсы на других нейронах всех типов, включая клетки-зерна, клетки Гольджи, звездчатые и корзинчатые клетки. С каждой клеткой Пуркинье обычно контактирует одно лазящее волокно.
Эфферентные волокна коры мозжечка представлены аксонами клеток Пуркинье, которые в виде миелиновых волокон направляются в белое вещество и достигает глубоких ядер мозжечка и вестибулярного ядра, на нейронах которых они образуют тормозные синапсы (клетки Пуркинье являются тормозными нейронами).
Межнейронные связи в коре мозжечка благодаря своему богатству обеспечивают переработку поступающей в нее разнообразной сенсорной информации. Возбуждающие импульсы поступают в кору мозжечка по лазящим и моховидным волокнам. В первом случае возбуждение передается на дендриты клеток Пуркинье непосредственно, во втором — через клубочки мозжечка — на дендриты клеток-зерен и далее по их аксонам (параллельным волокнам). Последние образуют возбуждающие синапсы также на дендритах корзинчатых и звездчатых клеток и больших клеток-зерен. Аксоны корзинчатых клеток образуют тормозные синапсы на телах клеток Пуркинье, а аксоны звездчатых клетокна их дендритах. Аксоны больших зернистых клеток в клубочках мозжечка образуют тормозные синапсы на дендритах клеток-зерен. Сформированные в коре мозжечка тормозные сигналы передаются с клеток Пуркинье на ядра мозжечка и вестибулярные ядра, а через них в конечном итоге контролируют активность нисходящих двигательных путей. В качестве основного медиаторов в возбуждающих синапсах используется глутамат и аспартат, в тормозных — амма-аминомаслянная кислота.
Глиальные элементы коры мозжечка обеспечивают функции нейронов, располагаются во всех ее слоях и весьма разнообразны; они включают олигодендроциты (участвуют в образовании миелиновых оболочек нервных волокон), астроциты, микроглию. Астроциты своими уплощенными на концах отростками образуют периваскулярные пограничные мембраны (компонент гемато-энцефалического барьера) и оболочки вокруг клубочков мозжечка. Особый тип астроцитов (клетки, или волокна Бергмана) располагаются вблизи тел клеток Пуркинье; их отростки охватывают тела нейронов идут к поверхности молекулярного слоя, формируя поверхностную пограничную глиальную мембрану, окружают и поддерживают дендриты клеток Пуркинье.

Текущая страница: 11 (всего у книги 20 страниц) [доступный отрывок для чтения: 5 страниц]

Клетки Пуркинье (грушевидные нейроны) – крупные клетки с телом грушевидной формы, содержащим хорошо развитые органеллы. От него в молекулярный слой отходят 2–3 первичные (стволовые) дендрита, интенсивно ветвящиеся в плоскости, перпендикулярной направлению извилины, с образованием конечных (терминальных) дендритов, достигающих поверхности молекулярного слоя. На дендритах находятся 60-100 тыс. шипиков – контактных зон возбуждающих синапсов, образуемых параллельными волокнами (аксонами клеток-зерен) и возбуждающих синапсов, образуемых лазящими волокнами.

Аксон клетки Пуркинье отходит от основания ее тела, одевается миелиновой оболочкой, пронизывает зернистый слой и проникает в белое вещество, являясь единственным эфферентным путем его коры. По ходу аксон отдает коллатерали, возвращающиеся в область расположения тел клеток Пуркинье и образующие тормозные синапсы на телах соседних клеток Пуркинье и клеток Гольджи.

Количество клеток Пуркинье заметно снижается при старении – на 20–40 % к 70–90 годам (по сравнению с их числом у 40–50 летних), что, вероятно, служит одной из причин нарушения функции мозжечка у пожилых людей.

Зернистый слой содержит близко расположенные тела клеток-зерен, больших клеток-зерен (клеток Гольджи), а также клубочки мозжечка – особые округлые сложные синаптические контактные зоны между моховидными волокнами, дендритами клеток-зерен и аксонами больших клеток-зерен.

Клетки-зерна – наиболее многочисленные нейроны коры мозжечка. Это мелкие нейроны со слабо развитыми органеллами и короткими дендритами, имеющими вид «птичьей лапки», на которых в клубочках мозжечка розетки моховидных волокон образуют многочисленные синаптические контакты. Аксоны клеток-зерен направляются в молекулярный слой, где Т-образно делятся на две ветви, идущие параллельно длине извилины (параллельные волокна), образуя возбуждающие синапсы на дендритах клеток Пуркинье, корзинчатых и звездчатых клеток и больших клеток-зерен. Через дендритное дерево каждой клетки Пуркинье проходит до 200–300 тыс. параллельных волокон, образуя на каждой клетке 60-100 тыс. синапсов (не все волокна образуют синапсы). Аксон каждой клетки-зерна образует связи с дендритами 250–500 клеток Пуркинье.

Большие клетки-зерна (клетки Гольджи) крупнее клеток-зерен, содержат хорошо развитые органеллы. Их аксоны в пределах клубочков мозжечка образуют синапсы на дендритах клеток-зерен, а длинные дендриты поднимаются в молекулярный слой, где ветвятся и образуют связи с параллельными волокнами. Большие клетки-зерна оказывают угнетающее влияние на активность клеток-зерен.

Афферентные волокна коры мозжечка включают моховидные (мшистые) и лазящие.

Моховидные (мшистые) волокна мозжечка проходят в составе спинно– и мостомозжечковых путей и, разветвляясь, заканчиваются расширениями (розетками) в особых контактных зонах – клубочках мозжечка, образуя синаптические контакты с дендритами клеток-зерен, на которых оканчиваются также и аксоны больших клеток-зерен. Клубочки мозжечка снаружи не полностью окружены плоскими отростками астроцитов.

Лазящие (лиановидные) волокна мозжечка идут в составе оливомозжечковых путей и проникают в кору из белого вещества, проходя через зернистый слой до ганглионарного и стелясь по телам и дендритам клеток Пуркинье, на которых они заканчиваются возбуждающими синапсами. Коллатеральные ветки лазящих волокон образуют синапсы на других нейронах всех типов, включая клетки-зерна, клетки Гольджи, звездчатые и корзинчатые клетки. С каждой клеткой Пуркинье обычно контактирует одно лазящее волокно.

Эфферентные волокна коры мозжечка представлены аксонами клеток Пуркинье, которые в виде миелиновых волокон направляются в белое вещество и достигает глубоких ядер мозжечка и вестибулярного ядра, на нейронах которых они образуют тормозные синапсы (клетки Пуркинье являются тормозными нейронами).

Межнейронные связи в коре мозжечка благодаря своему богатству обеспечивают переработку поступающей в нее разнообразной сенсорной информации. Возбуждающие импульсы поступают в кору мозжечка по лазящим и моховидным волокнам. В первом случае возбуждение передается на дендриты клеток Пуркинье непосредственно, во втором – через клубочки мозжечка – на дендриты клеток-зерен и далее по их аксонам (параллельным волокнам). Последние образуют возбуждающие синапсы также на дендритах корзинчатых и звездчатых клеток и больших клеток-зерен. Аксоны корзинчатых клеток образуют тормозные синапсы на телах клеток Пуркинье, а аксоны звездчатых клетокна их дендритах. Аксоны больших зернистых клеток в клубочках мозжечка образуют тормозные синапсы на дендритах клеток-зерен. Сформированные в коре мозжечка тормозные сигналы передаются с клеток Пуркинье на ядра мозжечка и вестибулярные ядра, а через них в конечном итоге контролируют активность нисходящих двигательных путей. В качестве основного медиаторов в возбуждающих синапсах используется глутамат и аспартат, в тормозных – гамма-аминомаслянная кислота.

Глиальные элементы коры мозжечка обеспечивают функции нейронов, располагаются во всех ее слоях и весьма разнообразны; они включают олигодендроциты (участвуют в образовании миелиновых оболочек нервных волокон), астроциты, микроглию. Астроциты своими уплощенными на концах отростками образуют периваскулярные пограничные мембраны (компонент гемато-энцефалического барьера) и оболочки вокруг клубочков мозжечка. Особый тип астроцитов (клетки, или волокна Бергмана) располагаются вблизи тел клеток Пуркинье; их отростки охватывают тела нейронов идут к поверхности молекулярного слоя, формируя поверхностную пограничную глиальную мембрану, окружают и поддерживают дендриты клеток Пуркинье.

7. Кора больших полушарий мозга представляет собой высший и наиболее сложно организованный нервный центр экранного типа, деятельность которого обеспечивает регуляцию разнообразных функций организма и сложные формы поведения.

Кора образована слоем серого вещества толщиной 3–5 мм на поверхности извилин (30 %) и в глубине борозд (70 %) общей площадью 1500–2500 см2 при объеме около 300 см3. Серое вещество содержит нервные клетки (около 10–15 млрд), нервные волокна и клетки нейроглии (более 100 млрд).

На основании различий плотности расположения и строения клеток (цитоархитектоники), хода волокон (миелоархитектоники) и функциональных особенностей различных участков коры в ней выделяют 52 нерезко разграниченные поля.

Нейроны коры – мультиполярные, различных размеров и форм, включают более 60 видов, среди которых выделены два основных типа – пирамидные и непирамидные.

Пирамидные клетки – специфический для коры полушарий тип нейронов; по разным оценкам, составляет 50–90 % всех нейроцитов коры. От апикального полюса их конусовидного (на срезах – треугольного) тела, который обращен к поверхности коры, отходит длинный (апикальный) покрытый шипиками дендрит, направляющийся в молекулярный слой коры, где он ветвится. От базальной и латеральных частей тела вглубь коры и в стороны от тела нейрона расходятся 5-16 более коротких боковых (латеральных) дендритов, которые, ветвясь, распространяются в пределах того же слоя, где находится тело клетки. От середины базальной поверхности тела отходит длинный и тонкий аксон, идущий в белое вещество, который на расстоянии 60–90 мкм начинает давать коллатерали. Размеры пирамидных нейронов варьируются от 10 до 140 мкм; различают гигантские, крупные, средние и малые пирамидные клетки.

Непирамидные клетки располагаются практически во всех слоя коры, воспринимая поступающие афферентные сигналы, а их аксоны распространяются в пределах самой коры, передавая импульсы на пирамидные нейроны. Эти клетки весьма разнообразны и преимущественно являются разновидностями звездчатых клеток. Они включают шипиковые, звездчатые, корзинчатые, аксоаксональные клетки, клетки-«канделябры», клетки с двойным букетом дендритов, горизонтальные клетки Кахаля, клетки Мартинотти и другие. Основная функция непирамидных клеток – интеграция нейронных цепей внутри коры.

Цитоархитектоника коры полушарий большого мозга

Нейроны коры располагаются нерезко разграниченными слоями (пластинками), которые обозначаются римскими цифрами и нумеруются снаружи внутрь.

I. Молекулярный слой располагается под мягкой мозговой оболочкой; содержит сравнительно небольшое число мелких нейронов – горизонтальных клеток Кахаля с длинными ветвящимися дендритами, отходящими в горизонтальной плоскости от веретеновидного тела. Их аксоны участвуют в образовании тангенциального сплетения волокон этого слоя. В молекулярном слое имеются многочисленные дендриты, и аксоны клеток более глубоко расположенных слоев, образующих межнейронные связи.

II. Наружный зернистый слой образован многочисленными мелкими пирамидными и звездчатыми клетками, дендриты которых ветвятся и поднимаются в молекулярный слой, а аксоны либо уходят в белое вещество, либо образуют дуги и также направляются в молекулярный слой.

III. Пирамидный слой значительно варьирует по ширине и максимально выражен в ассоциативных и сенсомоторных областях коры. В нем преобладают пирамидные клетки, размеры которых увеличиваются вглубь слоя от мелких до крупных. Апикальные дендриты пирамидных клеток направляются в молекулярный слой, а латеральные образуют синапсы с клетками данного слоя. Аксоны этих оканчиваются в пределах серого вещества или направляются в белое. Помимо пирамидных клеток, слой содержит разнообразные непирамидные нейроны. Слой выполняет преимущественно ассоциативные функции, связывая клетки как в пределах данного полушария, так и с противоположным полушарием.

IV. Внутренний зернистый слой широкий в зрительной и слуховой областях коры, а в сенсомоторной области практически отсутствует. Он образован мелкими пирамидными и звездчатыми клетками. В этом слое заканчивается основная часть таламических (шипиковых) афферентных волокон. Аксоны клеток этого слоя образуют связи с клетками выше– и нижележащих слое коры.

V. Ганглионарный слой образован крупными, а в области моторной коры (прецентральной извилины) – гигантскими пирамидными клетками (Беца). Апикальные дендриты пирамидных клеток достигают I слоя, образуя там верхушечные букеты, латеральные дендриты распространяются в пределах того же слоя. Аксоны гигантских и крупных пирамидных клеток проецируются на ядра головного и спинного мозга, наиболее длинные из них в составе пирамидных путей достигают каудальных сегментов спинного мозга. В V слое сосредоточено большинство корковых проекционных эфферентов.

VI. Слой полиморфных клеток образован разнообразными по форме нейронами (веретеновидными, звездчатыми, клетками Мартинотти). Наружные участки слоя содержат более крупные клетки, внутренние – более мелкие и редко расположенные. Аксоны этих клеток уходят в белое вещество в составе эфферентных путей, а дендриты проникают до молекулярного слоя. Аксоны мелких клеток Мартинотти поднимаются к поверхности коры и ветвятся в молекулярном слое.

8. Миелоархитектоника и организация коры

Нервные волокна коры полушарий большого мозга включают три группы:

· афферентные;

· ассоциативные и комиссуральные;

· эфферентные волокна.

Афферентные волокна в виде пучков в составе радиальных лучей приходят в кору от ниже расположенных отделов головного мозга, в частности, от зрительных бугров и коленчатых тел. Большая часть этих волокон заканчивается на уровне IV слоя.

Ассоциативные и комиссуральные волокна – внутрикорковые волокна, которые соединяют между собой различные области коры в том же или в другом полушариях, соответственно. Эти волокна образуют пучки, которые проходят параллельно поверхности коры в I слое (тангенциальные волокна), во II слое (полоска Бехтерева), в IV слое (наружная полоска Байярже) и в V слое (внутренняя полоска Байярже). Последние две системы являются сплетениями, образованными конечными отделами афферентных волокон.

Эфферентные волокна связывают кору с подкорковыми образованиями. Эти волокна идут в нисходящем направлении в составе радиальных лучей (например, пирамидные пути).

Типы строения коры больших полушарий

В отдельных участках коры, связанных с выполнением разных функций, преобладает развитие тех или иных ее слоев, на основании чего различают агранулярный и гранулярный типы коры.

Агранулярный тип коры характерен для ее моторных центров и отличается наибольшим развитием III, V и VI слоев коры при слабом развитии II и IV (зернистых) слоев. Такие участки коры служат источниками нисходящих проводящих путей центральной нервной системы.

Гранулярный тип коры характерен для областей расположения чувствительных корковых центров. Он отличается слабым развитием слоев, содержащих пирамидные клетки, при значительной выраженности зернистых (II и IV) слоев.

Модульный принцип организации коры полушарий большого мозга

В коре полушарий большого мозга описаны повторяющиеся блоки (модули) нейронов, которые рассматриваются как ее морфофункциональные единицы, способные к относительно автономной деятельности. Они имеют форму цилиндров, или колонок, диаметром 200–300 мкм (по некоторым данным, до 500 мкм и более), проходящих вертикально через всю толщу коры. В коре большого мозга человека имеется около 2–3 млн таких колонок, каждая содержит примерно 5000 нейронов. Внутри колонки выделяют также более мелкие мини-колонки, включающие структуры, непосредственно окружающие апикальные дендриты пирамидных клеток.

Колонка включает в себя следующие структуры:

· афферентные пути;

· систему локальных связей;

· эфферентные пути.

Афферентные пути

В центре колонки проходят примерно 100 возбуждающих кортико-кортикальных волокон – аксонов пирамидных клеток других колонок данного и противоположного полушарий. Они образуют окончания во всех слоях колонки (в том числе на клетках Мартинотти, шипиковых звездчатых клетках, латеральных дендритах пирамидных клеток) и проходят до I слоя, где образуют ветви, уходящие за ее пределы.

Специфические афферентные импульсы по таламокортикальным волокнам поступают на тела и дендриты пирамидных клеток и на шипиковые звездчатые клетки IV слоя (последние по своим аксонам передают их на апикальные и базальные дендриты пирамидных клеток).

Система локальных связей формируется вставочными нейронами колонки, которые включают более десятка типов клеток. Часть из них обладает тормозной функцией и регулирует преимущественно активность пирамидных клеток. Из тормозных нейронов колонки наибольшее значение имеют:

· аксо-аксональные клетки, тела которых лежат во II и III слоях, а аксоны идут горизонтально, отдавая многочисленные терминальные веточки, которые образуют тормозные синапсы на начальных сегментах аксонов пирамидных клеток II и III слоев;

· клетки-«канделябры» встречаются во всех внутренних слоях коры. Их аксонные коллатерали идут горизонтально и дают несколько восходящих и нисходящих веточек, которые образуют спиральные ветвления вокруг апикальных дендритов пирамидных клеток;

· корзинчатые клетки, которые располагаются во II слое, на границе III и IV, а также IV и V слоев. Их аксоны проходят горизонтально на расстояние до 2–3 мм и, оплетая тела крупных и средних пирамидных клеток, влияют на 20–30 соседних колонок. Колонковые корзинчатые клетки обеспечивают торможение пирамидных клеток по вертикали внутри данной колонки;

· клетки с двойным букетом дендритов, отходящих вертикально от полюсов тела, расположенного во II–III слоях. Их аксон дает коллатерали, образующие контакты с дендритами как пирамидных клеток, так и непирамидных (в том числе тормозных) нейронов. Первый тип контактов опосредует угнетение пирамидных клеток, а второй – их активацию путем снятия торможения;

· клетки с аксонным пучком (кисточкой) – звездчатые нейроны II слоя, аксоны которых ветвятся в I слое, образуя связи с дистальными сегментами апикальных дендритов пирамидных клеток и с горизонтальными ветвями кортико-кортикальных волокон.

Эфферентные пути

Аксоны средних пирамидных клеток III слоя колонки устанавливают связи преимущественно с соседними колонками и колонками противоположного полушария, а аксоны крупных и гигантских пирамидных клеток V слоя, помимо этого, направляются в подкорковые центры, образуя вместе с аксонами веретеновидных клеток VI слоя систему эфферентных волокон коры.

Белое вещество головного мозга представлено пучками нервных волокон, которые поднимаются к серому веществу коры из ствола мозга и спускаются к стволу мозга от корковых центров серого вещества.

Глия головного мозга

Головной мозг содержит все виды макроглии (астроцитарную, эпендимную и олигодендроглию), а также микроглию.

Астроцитарная глия обеспечивает микроокружение нейронов, выполняет опорную и трофическую функции в сером и белом веществе, участвует в метаболизме нейромедиаторов. Астроциты уплощенными пластинчатыми концевыми участками своих отростков образуют три вида пограничных глиальных мембран: периваскулярные, поверхностную и субэпендимальную.

Периваскулярные пограничные мембраны окружают капилляры головного мозга и входят в состав гемато-энцефалического барьера, отделяющего нейроны центральной нервной системы от крови и тканей внутренней среды. Гемато-энцефалический барьер препятствует проникновению в центральную нервную систему переносимых кровью токсических веществ, нейромедиаторов, гормонов, антибиотиков (что затрудняет лечение инфекционных поражений мозга и его оболочек), поддерживает электролитный баланс мозга, обеспечивает избирательный транспорт ряда веществ (глюкозы, аминокислот) из крови в мозг.

Гемато-энцефалический барьер включает в себя следующие компоненты:

· эндотелий кровеносных капилляров (с непрерывной выстилкой)главный компонент гемато-энцефалического барьера. Его клетки связаны мощными плотными соединениями, образование которых индуцируется контактом с астроцитами. Эндотелий препятствует переносу одних веществ, содержит специфические транспортные системы для других и метаболически изменяет третьи, превращая их в соединения, неспособные проникнуть в мозг;

· базальную мембрану капилляров;

· периваскулярную пограничную глиальную мембрану из отростков астроцитов.

Поверхностная пограничная глиальная мембрана (краевая глия) мозга, расположена под мягкой мозговой оболочкой, образует наружную границу головного и спинного мозга, отделяя ткани центральной нервной системы от мозговых оболочек.

Субэпендимальная (перивентрикулярная) пограничная глиальнаямембрана располагается под слоем эпендимы и входит в состав нейро-ликворного барьера, который отделяет нейроны от спинномозговой жидкости, называемой также ликвором. Этот барьер представлен эпендимной глией, ее базальной мембраной (присутствует не везде) и отростки астроцитов.

Эпендимная глия образует выстилку желудочков головного мозга и входит в состав гематоликворного барьера (между кровью и спинномозговой жидкости).

Олигодендроглия встречается в сером и белом веществе; она обеспечивает барьерную функцию, участвует в формировании миелиновых оболочек нервных волокон, регулирует метаболизм нейронов, захватывает нейромедиаторы.

Микроглия – специализированные макрофаги центральной нервной системы, обладающие значительной подвижностью. Активируется при воспалительных и дегенеративных заболеваниях. Выполняет в центральной нервной системе роль антиген-представляющих дендритных клеток.

9. Желудочки головного мозга – система анастомозирующих полостей, сообщающихся с центральным каналом спинного мозга и субарахноидальным пространством, содержащих спинномозговую жидкость и выстланных однослойным пластом клеток эпендимой глии низкопризматической или кубической формы с микроворсинками и ресничками на апикальной поверхности. В отдельных участках эпендимоциты обладают специфическими структурно-функциональными особенностями и принимают участие в выработке спинномозговой жидкости и химической сигнализации.

Сосудистые сплетения желудочков головного мозга – структуры в области крыши III и IV желудочков, а также части стенок боковых желудочков, которые обеспечивают выработку 70–90 % спинномозговой жидкости (10–30 % вырабатываются тканями центральной нервной системы и выделяются эпендимой вне области сосудистых сплетений). Они образованы ветвящимися выпячиваниями мягкой мозговой оболочки, которые вдаются в просвет желудочков и покрыты особыми кубическими хороидными эпендимоцитами.

Хороидные эпендимоциты содержат большое количество митохондрий, умеренно развитый синтетический аппарат, многочисленные пузырьки и лизосомы. Их выпуклая апикальная поверхность покрыта многочисленными микроворсинками, латеральные формируют интердигитации и связаны комплексами соединений, а базальная образует переплетающиеся выросты (базальный лабиринт). По поверхности эпендимы сосудистых сплетений перемещаются уплощенные отростчатые клетки Кольмера с хорошо развитым лизосомальным аппаратом, которые, очевидно, являются макрофагами. Слой эпендимоцитов располагается на базальной мембране, отделяющей его от подлежащей рыхлой волокнистой соединительной ткани мягкой мозговой оболочки, в которой находятся многочисленные фенестрированные капилляры и встречаются слоистые обызвествленные тельца (конкреции). Избирательная ультрафильтрация компонентов плазмы крови с образованием спинномозговой жидкости происходит из капилляров в просвет желудочков через гемато-ликворный барьер. Установлено, что клетки эпендимы способны также секретировать некоторые белки в спинномозговой жидкости и частично поглощать вещества из спинномозговой жидкости (очищая ее от продуктов метаболизма мозга, лекарств, в частности, антибиотиков).

Гемато-ликворный барьер включает в себя:

· цитоплазму фенестрированных эндотелиальных клеток капилляров;

· базальную мембрану эндотелия капилляров;

· перикапиллярное пространство – широкое, содержащее рыхлую волокнистую соединительную ткань мягкой мозговой оболочки с большим количеством макрофагов;

· базальную мембрану эпендимы;

· слой хороидных эпендимных клеток.

Спинномозговая жидкость циркулирует в субарахноидальном пространстве желудочках головного мозга и центральном канале спинного мозга. Ее общий объем у взрослого составляет 140–150 мл. Она вырабатывается в количестве 500 мл в сутки, полностью обновляясь каждые 4–7 ч и по составу отличается от сыворотки крови – в ней резко снижено содержание белка и повышены концентрации натрия, калия и хлора. Спинномозговая жидкость содержит отдельные лимфоциты (не более 5 клеток на 1 мл). Всасывание компонентов спинномозговой жидкости в кровь происходит в области ворсинок паутинного сплетения, вдающихся в расширенные субдуральные пространства по средней линии головного мозга; в незначительной части оно осуществляется эпендимой сосудистых сплетений. Нарушение нормального оттока и всасывания спинномозговой жидкости приводит к развитию гидроцефалии (характеризуется расширением желудочков и сдавлением мозга, а во внутриутробном периоде и раннем детстве – до закрытия швов черепатакже увеличением размеров головы).

Функции спинномозговой жидкости:

· защитная (амортизация ударов и сотрясений мозга);

· образование гидростатической оболочки вокруг мозга и его нервных корешков и сосудов, которые свободно взвешены в окружающей их спинномозговой жидкости (в силу небольшого различия плотности спинномозговой жидкости и тканей мозга), благодаря этому уменьшается натяжение корешков и сосудов;

· создание оптимальной жидкой среды, окружающей органы центральной нервной системы, в частности, поддержание постоянства ионного состава, обеспечивающего нормальную активность нейронов и глии;

· удаление метаболитов, выделяемых тканями мозга;

· интегративная – благодаря переносу гормонов и других биологически активных веществ.

Танициты – специализированные клетки эпендимы в латеральных участках стенки III желудочка, инфундибулярного кармана и срединного возвышения, которые обеспечивают связь между спинномозговой жидкостью в просвете желудочков мозга и кровью. Они имеют кубическую или призматическую форму, их апикальная поверхность покрыта микроворсинками и отдельными ресничками, а от базальной отходит длинный отросток, оканчивающийся пластинчатым расширением на кровеносном капилляре. Танициты поглощают из спинномозговой жидкости и транспортируют их по своему отростку в просвет сосудов.

10. Мозговые оболочки

Головной мозг защищен костями черепа, а спинной – позвонками и межпозвонковыми дисками; они окружены тремя мозговыми оболочками (снаружи внутрь): твердой, паутинной и мягкой, которые фиксируют эти органы в черепе и позвоночном канале и выполняют защитную, амортизирующую функции, обеспечивают выработку и всасывание спинномозговой жидкости.

Твердая мозговая оболочка (dura mater) образована плотной волокнистой соединительной тканью с высоким содержанием эластических волокон. В позвоночном канале между ней и телами позвонков имеется эпидуральное пространство, заполненное рыхлой волокнистой соединительной тканью, богатой жировыми клетками, и содержащее многочисленные кровеносные сосуды. Твердая оболочка головного мозга плотно сращена с надкостницей костей черепа, эпидуральное пространство отсутствует. Со стороны, обращенной к паутинной оболочке, она покрыта пластом плоских глиальных клеток (менинготелием). Твердая оболочка головного мозга образует ряд отростков, которые проникают между частями мозга, отделяя их друг от друга. Между ее складками имеются выстланные эндотелием пространства, заполненные венозной кровью – синусы (пазухи) твердой мозговой оболочки.

Паутинная мозговая оболочка (arachnoidea) неплотно прилежит к твердой мозговой оболочке, от которой ее отделяет узкое субдуральное пространство, содержащее небольшое количество тканевой жидкости отличной от спинномозговой жидкости. Паутинная оболочка образована соединительной тканью с высоким содержанием фибробластов; между ней и мягкой мозговой оболочкой располагается заполненное спинномозговой жидкостью широкое субарахноидальное пространство, которое пересекают многочисленные тонкие ветвящиеся соединительнотканные тяжи (трабекулы), отходящие от паутинной оболочки и вплетающиеся в мягкую мозговую оболочку. В этом пространстве проходят крупные кровеносные сосуды, ветви которых питают мозг. На поверхностях, обращенных в субдуральное и субарахноидальное пространство, паутинная оболочка выстлана слоем плоских глиальных клеток, покрывающим и трабекулы.

Ворсинки паутинной оболочки – (наиболее крупные из них – пахионовы грануляции – видны макроскопически) служат участками, через которые вещества из спинномозговой жидкости возвращаются в кровь. Они представляют собой бессосудистые выросты паутинной оболочки головного мозга грибовидной формы, содержащие сеть щелевидных пространств и выпячивающиеся в просвет синусов твердой мозговой оболочки. В них спинномозговая жидкость отделяется от крови слоем глиальных клеток и эндотелием синуса. Количество и размеры этих ворсинок увеличиваются с возрастом.

Мягкая мозговая оболочка (pia mater), образованная тонким слоем соединительной ткани с высоким содержанием мелких сосудов и нервных волокон, непосредственно покрывает поверхность мозга, повторяя его рельеф и проникая в борозды. На обеих поверхностях (обращенной в субарахноидальное пространство и прилежащей к тканям мозга) она покрыта менинготелием. Мягкая мозговая оболочка окружает сосуды, проникающие в мозг, образуя вокруг них периваскулярную паильную мембрану, которая в дальнейшем (по мере уменьшения калибра сосуда) сменяется периваскулярной пограничной глиальной мембраной, образованной астроцитами. От тканей центральной нервной системы мягкая мозговая оболочка отделяется наружной пограничной глиальной мембраной и базальной мембраной, образуемыми астроцитами.

В области крыши III и IV желудочков, и некоторых участков стенки боковых желудочков головного мозга мягкая мозговая оболочка совместно с эпендимой принимает участие в образовании сосудистых сплетений, вырабатывающих спинномозговую жидкость.

При черепно-мозговых травмах в результате повреждения сосудов кровь может скапливаться под надкостницей (эпидуральная гематома), в субдуральном пространстве (субдуральная гематома). Разрыв стенки сосудов, проходящих по поверхности мозга, вызывает кровотечение в субарахноидальное пространство с появлением крови в спинномозговую жидкость. Оболочки мозга нередко поражаются инфекционными процессами (менингитами), которые могут осложняться образованием спаек в субарахноидальном пространстве с нарушением оттока спинномозговой жидкости и развитием гидроцефалии. Менинготелий часто становится источником развития доброкачественных опухолей центральной нервной системы.

Мозжечок (cerebellum) координирует движения и равновесие, расположен над продолговатым мозгом и мостом и связан со стволом мозга тремя парами ножек, по которым проходят афферентные и эфферентные проводящие пути. В глубине белого вещества мозжечка лежат скопления нейронов — ядра мозжечка. Извилины мозжечка, образующие на разрезе фигуру разветвлённого дерева (arbor vitae), разделены глубокими бороздами.

Кора мозжечка

Каждая извилина содержит узкую пластинку белого вещества, полностью покрытую серым веществом (кора мозжечка, рис. 8-37), в котором различают три слоя: наружный — молекулярный, средний — ганглионарный и внутренний — зернистый.

Ганглионарный слой, или слой грушевидных нейронов (слой клеток Пуркинье) образуют тела крупных нервных клеток. Их перикарионы расположены примерно на одном уровне от поверхности коры. От тела в молекулярный слой отходят 2-3 сильно ветвящихся дендрита. Через зернистый слой в белое вещество от тела грушевидных нейронов отходит аксон. Аксоны грушевидных нейронов — единственные эфферентные волокна, выходящие из коры мозжечка. Они заканчиваются на нейронах ядер мозжечка. Вблизи тела клетки от аксона отходят коллатерали, направляющиеся обратно в ганглионарный слой и глубокие части молекулярного слоя. На грушевидных нейронах так или иначе заканчиваются все афферентные пути мозжечка (рис. 8-37). Молекулярный слой содержит корзинчатые и звездчатые клетки. Корзинчатые клетки образуют многочисленные длинные и сравнительно мало раз- ветвлённые дендриты. Их аксон направлен параллельно поверхности мозжечка в той же плоскости, в которой расположены ветвления дендритов грушевидных нейронов. На всём протяжении аксон образует ветви, заканчивающиеся в виде корзинок на телах грушевидных нейронов. Активность корзинчатых нейронов вызывает торможение грушевидных нейронов.

Рис. 8-37. Организация коры мозжечка. Кора образована тремя слоями: наружный — молекулярный, средний — ганглионарный и внутренний — зернистый. Из подлежащего белого вещества в кору проходят афферентные лазящие и моховидные волокна, а выходят аксоны грушевидных клеток. Стрелками указано направление распространения возбуждения. [17]

 Звездчатые клетки расположены ближе к поверхности коры. Их аксоны образуют синаптические контакты с дендритами грушевидных нейронов. Эти нейроны вместе с корзинчатыми образуют систему вставочных нейронов, передающую тормозные импульсы на дендриты и тела грушевидных клеток в плоскости, поперечной извилинам.

Зернистый слой содержит клетки-зёрна, звездчатые клетки Гольджи и веретеновидные горизонтальные нейроны.

 Клетки-зёрна. Тело их весьма невелико и практически полностью занято ядром. 3-4 очень коротких дендрита образуют концевые разветвления, напоминающие птичьи лапки. Аксоны клеток-зёрен поднимаются в молекулярный слой, где образуют T-образные разветвления, идущие параллельно поверхности мозжечка в плоскости, совпадающей с направлением извилины. Это параллельные волокна, образующие синапсы с дендритами: грушевидных нейронов, корзинчатых клеток, звездчатых клеток, клеток Гольджи типа II.

 Звездчатые клетки Гольджи. Различают звездчатые нейроны с короткими и длинными аксонами. Крупные перикарионы звездчатых нейронов с короткими аксонами нередко лежат непосредственно под ганглионарным слоем, а большая часть дендритов разветвляется в молекулярном слое и образует синапсы с параллельными волокнами — аксонами клеток-зёрен. Их короткие аксоны, входя в состав клубочков мозжечка (glomeruli cerebellosi), заканчиваются синаптическими контактами на розетках моховидных волокон.

 Веретеновидные горизонтальные нейроны имеют небольшой вытянутый перикарион, от которого отходят длинные горизонтальные дендриты, заканчивающиеся в слое грушевидных нейронов и зернистом слое. Аксоны этих нейронов образуют коллатерали в зернистом слое и уходят в белое вещество.

Афференты мозжечка

В кору мозжечка входят многочисленные волокна из различных отделов мозга. В зернистом слое находятся моховидные волокна. Лазящие волокна заканчиваются в молекулярном слое на дендритах грушевидных нейронов.

 Моховидные волокна, проникнув в зернистый слой, ветвятся и формируют концевые розетки, вступающие в контакт с дендритами клеток-зёрен в составе клубочков мозжечка. Моховидные волокна образуют также синапсы с дендритами клеток Гольджи типа II. Следовательно, моховидные волокна вступают в контакт как с короткими аксонами звездчатых нейронов зернистого слоя, так и с их дендритами.

 Лазящие волокна подходят к телам грушевидных нейронов и здесь распадаются на несколько тонких веточек, оплетающих дендриты. На один грушевидный нейрон приходится одно лазящее волокно.

       Головной мозг  состоит  из конечного мозга  и ствола головного мозга. Ствол головного мозга включает: 1)продолговатый мозг (medulla oblangata); 2)задний мозг (metencephalon); 3)средний мозг (mesencephalon); 4)промежуточный мозг (diencephalon); В состав ствола головного мозга входит белое и серое вещество, располагающиеся вперемешку. Серое вещество сконцентрировано в ядрах, состоящих из ассоциативных мультиполярных нейронов. Конечный мозг включает базальную часть и 2 полушария, покрытые корой головного мозга.

       ПРОДОЛГОВАТЫЙ МОЗГ включает ядра черепномозговых нервов (подъязычного, языкоглоточного, блуждающего и добавочного) и переключательные ядра: 1)ядро нежного пучка; 2)ядро клиновидного пучка; 3)ядра нижних олив; 4)добавочное медиальное ядро олив; 5)добавочное дорсальное ядро олив; 6)ретикулярную формацию. Все периключательные ядра состоят из ассоциативных нейронов. Наиболее крупые ядра- ЯДРА НИЖНИХ ОЛИВ. От них волокна направляются к зрительным буграм и коре мозжечка, к нижним оливам идут волокна от красного ядра, мозжечка, ретикулярной формации, спинного мозга.

       РЕТИКУЛЯРНАЯ ФОРМАЦИЯ начинается в краниальном конце спинного мозга, проходит продолговатый мозг, средний мозг и заканчивается в промежуточном мозге. Ретикулярная формация называется так потому, что состоит из переплетения нервных волокон. В петлях этих волокон располагаются в основном мелкие нервные клетки, соединяющие различные отделы ретикулярной формации. Имеются крупные нейроны, связывающие ретикулярную формацию с другими ядрами ствола головного мозга,а также со спинным мозгом. Через ретикулярную формацию проходит шов, образованный перекрестом нервных волокон, идущих от ядер нежного и клиновидного пучков. В составе шва эти волокна достигают зрительных бугров. ФУНКЦИИ РЕТИКУЛЯРНОЙ ФОРМАЦИИ: 1)контроль тонуса мышц; 2)контроль стереотипных движений.

       На вентральной поверхности продолговатого мозга расположено белое вещество, в составе которого проходят пирамидные пути, представленные эфферентными миелиновыми волокнами, идущими от коры; в белом веществе боковых поверхностей- веревчатые тела, в которых проходят спиномозжечковые, оливомозжечковые и момтомозжечковые пути.

       МОСТ (pons). а дорсальной поверхности моста видны поперечно идущие нервные волокна, на вентральной поверхности- пирамидные пути. Мост содержит собственные ядра, от которых волокна направляются в мозжечок (моховидные волокна) по мостомозжечковому пути. Имеются ядра черепно-мозговых нервов (ядра лицевого, отводящего и тройничного), а также переключательные ядра: 1) ядро боковой петли; 2)ядро трапециевидного тела и 3)ядра верхних олив. Эти 3 переключательных ядра относятся к слуховым путям.

       СРЕДНИЙ МОЗГ (mesencephalon) включает: 1)черную субстанцию, 2)крышу, 3)покрышку и 4)ножки мозга. По ножкам мозга проходят нервные волокна, идущие от коры головного мозга к низшим центрам нервной системы. Черная субстанция характеризуется тем, что в ее нейронах содержится пигмент черного цвета. Крыша представлена пластинкой четверохолмия, в которой имеются два верхних холмика и два нижних холмика. В нижних холмиках содержатся нейроны, являющиеся частью слухового пути, верхние холмики- частью зрительного пути.

       В ПОКРЫШКЕ среднего мозга содержится до 30 пар ядер. Из них наиболее крупные- красные ядра (nucleus rubra). В красных ядрах содержатся мелкие нейроны, на которых заканчиваются синапсами волокна из мозжечка. Аксоны мелких нейронов контактируют с нейронами ретикулярной формации. Аксоны крупных нейронов красных ядер направляются к другим ядрам ствола головного мозга, а также в спинной мозг в составе руброспинального пути (tractus rubraspinalis) и заканчиваются синапсами на моторных нейронах спинного мозга.

       ПРОМЕЖУТОЧНЫЙ МОЗГ (diencephalon) представлен зрительными буграми (thalamus), в которых содержатся многочисленные ядра, разделенные прослойками белого вещества. К подушкам зрительных бугров подходят зрительные пути, к вентральной части бугров- чувствительные пути. К зрительным буграм подходят волокна от нижних олив, спинного мозга по tractus spinithalamicus, от ядер нежного пучка и клиновидного пучка продолговатого мозга. От зрительных бугров в кору головного мозга направляются несколько миллионов специфических волокон.

       ГИПОТАЛАМИЧЕСКАЯ ОБЛАСТЬ, ИЛИ ГИПОТАЛАМУС располагается под зрительными буграми и регулирует все висцеральные функции: регуляция функции сердца, артериального давления (тонуса кровеносных сосудов), пищеварительной системы, потовых желез, температуры тела и т.д. Гипоталамус подразделяется на передний, средний и задний.

       В гипоталамусе содержатся многочисленные ядра. Наиболее крупные ядра переднего гипоталамуса: 1)супраоптические (nucleus supraopticus; 2) паравентрикулярные (nucleus paraventricularis). СУПРАОПТИЧЕСКИЕ ядра состоят из крупных холинергических нейросекреторных клеток, в которых хорошо развит синтетический аппарат, включающий комплекс Гольджи, гранулярную ЭПС, митохондрии. В нейроплазме тела и аксонах этих нейронов имеются гранулы секрета. Нейроны этого ядр вырабатывают 2 гормона: вазопрессин и окситоцин.

       ВАЗОПРЕССИН стимулирует сокращение миоцитов кровеносных сосудов (повышает артериальное давление) и усиливает реабсорбцию (обратное всасывание) воды из канальцев почек. ОКСИТОЦИН стимулирует сокраще-ние миоэпителиальных клеток молочных желез, миоцитов матки и семя-выносящих путей.

       ПАРАВЕНТРТКУЛЯРНЫЕ ядра состоят из двух видов нейросекреторных клеток: 1)таких же как в супраоптическом ядре (крупные, холинергические) и выделяющих вазопрессин с окситоцином и 2)мелких адренергических нейросекретоных клеток, секретирующих ризлинг-гормоны (либерины и статины), регулирующие функцию аденогипофиза.

       В среднем (медиобазальном) гипоталамусе содержатся следующие ядра: 1) аркуатное, или инфундибулярное (nucleus infundibularis); 2)вентрамедиальное (nucleus ventramedialis); 3)дорсомедиальное (nucleus dorsomedialis); 4)супрахиазматическое ядро (nucleus suprahiasmaticus); 5)серая перивентрикулярная субстанция (substantia grisea perventricularis) и 6)преоптическая зона (zona preoptica).

       Во всех ядрах среднего гипоталамуса содержатся мелкие, адренергические нейросекреторные клетки, вырабатывающие ризлинг-гормоны.

                          МОЗЖЕЧОК (cerebellum)

       Поверхность мозжечка покрыта корой, в которой сконцентрировано серое вещество (нейроны и нейроглия). Кора мозжечка образует извилины и складки, за счет чего увеличивается ее поверхность. Серое вещество содержится и в четырех ядрах мозжечка: 1)зубчатом (nucleus dentatus); 2)ядре шатра (nucleus fastigii); 3)пробковидном ядре (nucleus emboliformis); 4)шаровидном ядре (nucleus globosus).

       КОРА МОЗЖЕЧКА (cortex cerebelli) состоит из трех слоев: 1)молекулярного (stratum moleculare); 2)грушевидного, или ганглионарного (stratum ganglionare); 3)зернистого (stratum granulare).

       СЛОЙ ГРУШЕВИДНЫХ КЛЕТОК (stratum neuronum piriformium)- главный слой коры мозжечка. Грушевидные клетки являются ассоциативноэфферентными, от них начинается эфферентный путь. Нейроны этого слоя имеют грушевидную форму, расположены в 1 ряд поперечно извилины. Длина грушевидных нейронов около 60 мкм. От их вершины отходят в молекулярный слой 2-3 сильно ветвящихся дендрита. Ветвления дендритов направлены поперек извилины. От основания грушевидных нейронов отходит аксон, который, проходя по зернистому слою, отдает коллатерали, направленные снова к грушевидному слою и контактирующие с соседними грушевидными нейронами. Основная веточка аксона, дающая начало нисходящему (эфферентному) пути, направляется к одному из ядер мозжечка и заканчивается синапсом на его нейронах. Таким образом, грушевидные нейроны коры мозжечка являются ассоциативно-эфферентными.

       Грушевидные нейроны являются основными, они отвечают за координацию движений. Нейроны остальных слоев коры мозжечка являются вспомогательными, т.е. они являются тормозными или возбуждающими.

       МОЛЕКУЛЯРНЫЙ СЛОЙ (stratum moleculare) представлен 2 видами нейронов: 1)корзинчатыми (neurocytus corbiformis) и 2) звездчатыми (neurocytus stellatus), которые подразделяются на большие (neurocytus stellatus magnus) и малые (neurocytus stellstus parvus).

       КОРЗИНЧАТЫЕ НЕЙРОЦИТЫ располагаются во внутренней трети молекулярного слоя. Их дендриты разветвляются поперечно извилине. Аксоны также направляются поперечно извилине над телами грушевидных нейронов и отдают этим телам ветви, которые оплетают тела грушевидных нейронов, образуя вокруг них корзинки, являющиеся своеобразными синапсами. ФУНКЦИЯ корзинчатых нейронов- тормозная.

       МАЛЫЕ ЗВЕЗДЧАТЫЕ НЕЙРОНЫ располагаются в наружной трети молекулярного слоя. Их короткие аксоны контактируют с дендритами грушевидных нейронов. Их ФУНКЦИЯ- тормозная.

       БОЛЬШИЕ ЗВЕДЧАТЫЕ НЕЙРОНЫ располагаются в средней трети молекулярного слоя, их дендриты разветвляются здесь же, а аксон направляется либо к дендритам грушевидных нейронов, либо к телу, принимая участие в формировании корзинок. ФУНКЦИЯ больших звездчатых нейронов- тормозная.

       Таким образов все нейроны молекулярного слоя выполняют тормозную функцию, т.е. тормозят передачу импульса на грушевидные нейроны.

       ЗЕРНИСТЫЙ СЛОЙ (stratum granulosum) состоит из 4-х разновидностей нейронов. Самые многочисленные- зерновидные нейроны (neurocytus granuloformis) или клетки-зерна.

       ЗЕРНОВИДНЫЕ НЕЙРОЦИТЫ самые мелкие, диаметр 5-6 мкм, почти всю клетку занимает ядро. От базальной части клеток-зерен отходят 2-3 дендрита, которые разветвляются в виде птичьей лапки. К дендритам подходят моховидные волокна, идущие от моста или нижних олив, и образуют синапсы. Места контактов моховидных волокон с дендритами клеток-зерен называются клубочками мозжечка (glomeruli cerebellaris). От вершин клеток-зерен отходит аксон, который направляется в молекулярный слой, Т-образно делится и идет вдоль извилин, образуя синапсы с дендритами клеток молекулярного слоя, в том числе- грушевидных клеток. ФУНКЦИЯ клеток-зерен- передача возбуждающих импульсов на грушевидные нейроны. Таким образом, из всех вспомогательных нейронов коры мозжечка только клетки-зерна являются возбуждающими, остальные- тормозные, т.е. клетки-зерна- это ассоциативно-афферентные, а все остальные- ассоциативно-тормозные.

       БОЛЬШИЕ ЗВЕЗДЧАТЫЕ КЛЕТКИ ГОЛЬДЖИ зернистого слоя делятся на длинноаксонные (neurocytus stillatus magnus longiacsonicus) и короткоаксонные (neurocytus stillstus magnus breviacsonicus).

       КОРОТКОАКСОННЫЕ БОЛЬШИЕ ЗВЕЗДЧАТЫЕ НЕЙРОЦИТЫ. Их дендриты направляются в молекулярный слой и образуют синапсы с аксонами клеток-зерен, а корокие аксоны подходят к дендритам клеток-зерен и образуют тормозные синапсы, участвуя в формировании  клубочков мозжечка.

       ДЛИННОАКСОННЫЕ БОЛЬШИЕ ЗВЕЗДЧАТЫЕ НЕЙРОНЫ располагаются вблизи от грушевидных нейронов. Их дендриты разветвляются здесь же, а аксоны выходят в белое вещество и снова возвращаются в кору мозжечка, образуя ассоциативные связи между ее отдельными частями.

       ГОРИЗОНТАЛНЫЕ ВЕРЕТЕНОВИДНЫЕ КЛЕТКИ (neurocytus horisontalis fusiformis) располагаются рядом со слоем грушевидных нейронов. Их дендриты т-образно разделяются и контактируют с множеством нейронов, а аксоны направляются к другим участкам коры мозжечка. ФУНКЦИЯ этих нейронов- ассоциативная.

       АФФЕРЕНТНЫЕ ВОЛОКНА мозжечка. В мозжечок приходят 2 вида афферентных волокон: 1)моховидные, идущие от нижних олив и моста; 2)лазящие, идущие от спинного мозга и вестибулярных ядер продолговатого мозга.

       МОХОВИДНЫЕ ВОЛОКНА вступают в синаптическую связь с дендритами клеток-зерен (клубочки мозжечка) и передают возбуждающий импульс, который по аксонам, идущим в молекулярный слой, передается на дендриты грушевидных нейронов.

       ЛАЗЯЩИЕ ВОЛОКНА направляются в молекулярный слой по дендритам грушевидных нейронов и образуют на этих дендритах возбуждающие си-напсы.

       РЕФЛЕКТОРНАЯ ДУГА С ЗАХОДОМ В МОЗЖЕЧОК. 1-й нейрон заложен в спинальном ганглии, 2-й нейрон (ассоциативный) в собственном ядре заднего рога или в грудном ядре, аксоны этих нейронов в виде лязящих волокон в составе спиномозжечковых путей направляются к дендритам грушевидных клеток, 3-й нейрон- это грушевидные нейроны коры мозжечка, от которых начинается нисходящая (эфферентная) часть рефлекторной дуги, 4-й нейрон заложен в одном из четырех ядер мозжечка, к этому нейрону подходит аксон грушевидной клетки, 5-й нейрон- это мелкие нейроны красного ядра, к которым подходят аксоны от собственных ядер мозжечка, 6-й нейрон заложен в ретикулярной формации, к которому подходят аксоны от 5-го нейрона, 7-й нейрон заложен в передних рогах серого вещества спинного мозга, к которому подходят аксоны нейронов ретикулярной формации. Аксоны седьмых (моторных) нейронов несут импульс к скелетным мышцам, вызывающий торможение одних и сокращение других мышц.

       РЕФЛЕКТОРНАЯ ДУГА С ЗАХОДОМ В МОЗЖЕЧОК является не осознанной. Когда человек поскользнулся и начинает падать, он не успевает подумать, что он поскользнулся, что нужно выбросить одну ногу вперед, руки в сторону, изогнуться и сохранить равновесие. Все это происходит автоматически. Только тогда, когда человек сохранил равновесие или упал, он высказывает свои комментарии по этому поводу.

                         КОРА ГОЛОВНОГО МОЗГА

       КОРА ГОЛОВНОГО МОЗГА (cortex cerebri) образует складки и извилины. Толщина коры составляет 2-5 мм. В коре имеются поля (зрительные, слуховые, обонятельные и т.д.). Эти поля не имеют четких границ, отличаются друг от друга строением нейронов и расположением нервных волокон.

       В состав коры головного мозга входит до 14 миллиардов нейронов различной формы. Больше всего пирамидных нейронов, есть звездчатые, веретеновидные, корзинчатые, паукообразные и др. формы.

       ПИРАМИДНЫЕ НЕЙРОНЫ имеют пирамидную форму, размеры от 10 до 140 мкм. От верхушки отходит верхушечный дендрит, который направляется в молекулярный слой, от боковых поверхностей- боковые дендриты. Боковые дендриты, отходящие от основания, называются основными. От основания пирамиды отходит аксон.

       РАЗВИТИЕ КОРЫ ГОЛОВНОГО МОЗГА наиболее интенсивно происходит на 20 неделе эмбриогенеза. В это время формируются поддерживающие глиоциты (gliocytus sustentans) и глиальные волокна, которые располагаются перпендикулярно к поверхности будущей коры- это кортикальная пластинка. В эту пластинку сначала внедряются нейроны VI и I слоев будущей коры, позже внедряются нейроциты V, IV, III и, наконец, II слоев. По мере внедрения этих слоев в кортикальную пластинку, она, т.е. кора утолщается. После рождения ребенка вертикальные глиальные волокна исчезают.

       Расположение и строение нейронов коры головного мозга называется цитоархитектоникой, а расположение нервных волокон- миелоархитектоникой.

       ЦИТОАРХИТЕКТОНИКА КОРЫ ГОЛОВНОГО МОЗГА. В коре головного мозга нейроны образуют 6 нечетко отграниченных друг от друга слоев: 1)молекулярный (самый наружный); 2 наружный зернистый; 3)пирамидный (самый широкий); 4)внутренний зернистый; 5)ганлионарный (слой ги-гантских пирамид); 6)слой полиморфных клеток (полиморфный).

       МОЛЕКУЛЯРНЫЙ СЛОЙ (stratum moleculare) содержит мало нейронов и состоит преимущественно из горизонтально расположенных волокон. В этот слой поступают дендриты от всех слоев  коры  головного мозга. Здесь видны мелкие веретеновидные клетки, отростки которых распола-гаются параллельно поверхности коры.

      НАРУЖНЫЙ ЗЕРНИСТЫЙ СЛОЙ (stratum granulosum externum) состоит из мелких нейронов различной формы: пирамидных, звездчатых, овальных. Пирамиды этого слоя имеют размеры около 10 мкм. Их верхушечные дендриты направляются в молекулярный слой, боковые ветвятся здесь же, аксоны выходят в белое вещество и снова возвращаются в кору, образуя кортико-кортикальные нервные волокна.

       ПИРАМИДНЫЙ СЛОЙ (stratum piramidale) состоит из мелких и средних пирамид (10-40 мкм). Мелкие пирамидные нейроны располагаются более поверхностно, средние- глубже. Верхушечные дендриты пирамид направляются в молекулярный слой, боковые- образуют синапсы с нейронами этого слоя, аксон- направляется в белое вещество, образует кортико- кортикальное волокно, которое возвращается в кору и направляется в молекулярный слой. Одни кортико- кортикальные волокна заканчиваются синапсами в своем полушарии. Они называются ассоциативными, другие  проходят  через мозолистое тело на проитвоположное полушарие и называются комиссуральными.

       ВНУТРЕННИЙ ЗЕРНИСТЫЙ СЛОЙ (sratum granulosum internum) состоит из мелких нейронов овальной, пирамидной формы, шипиковых звездчатых нейронов. Дендриты нейронов этого слоя направляются в молекулярный слой, аксоны выходят в белое вещество.

       ГАНГЛИНАРНЫЙ СЛОЙ (stratum ganglionare) состоит из гигантских пирамид- клеток В.А.Беца. В.А.Бец- это Киевский ученый, который впервые увидел и описал эти клетки. Верхушечные дендриты этих клеток направляются в молекулярный слой, боковые дендриты располагаются в этом же слое, контактируя с соседними нейронами. Часть аксонов гигантских пирамид направляется в спинной мозг, образуя пирамидные, или кортико- спинальные пути, которые заканчиваются на моторных нейронах спинного мозга. Вторая часть аксонов направляется к ядрам ствола головного мозга, образуя кортико- нуклеарные пути, заканчивающиеся в красном ядре, ядрах нижних олив, моста, откуда поступают в мозжечок в виде моховидных волокон.

       От аксонов пирамид, образующих кортико- спинальные пути отходят коллатерали, которые возвращаются в кору головного мозга, а также к красному ядру, хвостатому ядру, ядрам нижних олив, моста и др.

       ПОЛИМОРФНЫЙ СЛОЙ (stratum multiformis) называется так потому, что здесь имеются различные формы нейронов: веретеновидные, пирамидные и другие. Дендриты этих нейронов поднимаются в молекулярный слой, аксоны выходят в белое вещество и принимают участие в образовании кортикоспинальных (пирамидных) путей.

       РЕФЛЕКТОРНАЯ ДУГА с заходом в кору головного мозга. 1-й нейрон расположен в чувствительном спинальном ганглии или в ганглии головы, аксоны нейронов спинальных ганглиев направляются или в собственное ядро заднего рога, либо к ненжному и клиновидному ядрам продолговатого мозга. В этих ядрах заложен 2-й нейрон. Аксоны вторых нейронов направляются к зрительным буграм. В зрительных буграх заложен 3-й нейрон. Аксоны третьих нейронов в виде специфических волокон направляются к нейронам коры головного мозга, которые являются 4-м нейроном. Аксоны четвертых нейронов в составе пирамидного пути направляются к моторным нейронам спинного мозга, являющимися 5-м нейроном, аксон которого направляется к скелетным мышцам.

       Существуют 2 типа коры: 1)гранулярный и 2)агранулярный.

       ГРАНУЛЯРНЫЙ тип коры характеризуется тем, что в нем хорошо развиты зернистые слои (2-й и 4-й). Такой тип коры находится в област чувствительных центров (слухового, зрительного).

       АГРАНУЛЯРНЫЙ ТИП КОРЫ характеризуется слабым развитием  зернистых и сильным развитием пирамидных (3-го и 5-го) слоев и слоя полиморфных клеток.

       МОДУЛИ КОРЫ ГОЛОВНОГО МОЗГА представлены макроколонками, диаметр которых около 300 мкм. Модуль- это многократно повторяющаяся структура, выполняющая одни и те же функции. В коре головного мозга человека имеется около 3 миллионов модулей. Каждая макроколонка формируется вокруг кортико- кортикального волокна (аксона пирамидного нейрона 2-го или 3-го слоев коры). В состав макроколонки входят микроколонки, диаметр которых менее 100 мкм. В каждой макроколонке имеется возбуждающая и тормозная системы.

       ВОЗБУЖДАЮЩАЯ СИСТЕМА МОДУЛЯ состоит из волокон и нейронов. К макроколонке от зрительных бугров подходят 2 специфических волокна, которые заканчиваются синапсами на шипиковых клетках внутреннего зернистого слоя или на базальных дендритах пирамид 3-го слоя. Шипи-ковые и пирамидные нейроны, таким образом, относятся к возбуждающей системе. Среди шипиковых нейроцитов есть 2 разновидности: 1)фокальный тип, аксоны которых заканчиваются на верхушечных дендритах пирамид; 2)клетки диффузного типа, аксоны которых заканчиваются на базальных дендритах пирамидных нейронов. Аксоны пирамидных нейронов являются кортико- кортикальными волокнами.

       От пирамидных нейронов каждой колонки отходят 3 кортико- кортикальных волокна, которые после выхода в белое вещество возвращаются в кору своей половины полушария. Они называются ассоциативными кортико- кортикальными волокнами. Вокруг каждого из этих волокон формируется макрколонка. Кроме того, от каждого модуля отходит еще 2 кортико- кортикальных волокна, которые через мозолистое тело переходит во вторую половину полушария. Эти волокна называются комиссуральными. Вокруг каждого из них тоже формируется по макроколонке. Таким образом, каждый модуль связан с 3 модулями своей половины и 2 модулями противоположной половины полушария.

       Кортико-кортикальное волокно поднимается от 6-го слоя коры к первому- молекулярному слою. На своем пути кортико-кортикальное волокно отдает веточки к нейронам каждого слоя, на которых образуютс синоптические связи. Достигнув молекулярного слоя, кортико- кортикальное волокно разделяется т-образно на 2 веточки,  которые распространяются далеко за пределы макроколонки.

       Таким образом, к возбуждающей системе относятся два специфических нервных волокна, идущих от зрительных бугров, шипиковые клетки фокального и диффузного типов, пирамидные нейроны и кортико- кортикальные волокна, являющиеся аксонами пирамидных нейронов.

       ТОРМОЗНАЯ СИСТЕМА МОДУЛЯ включает 4 разновидности тормозных нейронов: 1)нейроны с аксональной кисточкой; 2)корзинчатые большие и малые; 3)аксо-аксональные и 4)нейроны с двойным букетом дендритов.

       ТОРМОЗНЫЕ нейроны с аксональной кисточкой располагаются в пределах молекулярного слоя и образуют тормозные синапсы на веточках кортико- кортикальных волокон, препятствуя прохождению импульса по горизонтали.

       МАЛЫЕ КОРЗИНЧАТЫЕ ТОРМОЗНЫЕ нейроны располагаются в V, III и II слоях. Их аксоны образуют тормозные синапсы на пирамидах этих трех слоев. БОЛЬШИЕ КОРЗИНЧАТЫЕ НЕЙРОНЫ образуют тормозные синапсы на пирамидах вышеуказанных 3-х слоев, но за пределами своей колонки.

       АКСОАКСОНАЛЬНЫЕ ТОРМОЗНЫЕ нейроны располагаются в III и II слоях, и образуют тормозные синапсы на пирамидных нейронах этих двух слоев.

       ТОРМОЗНЫЕ НЕЙРОНЫ С ДВОЙНЫМ БУКЕТОМ ДЕНДРИТОВ характеризуются тем, что их аксоны образуют тормозные синапсы на всех остальных тормозных нейронах, растормаживая, таким образом, пирамидные нейроны. Эти тормозные нейроны получают импульсы от шипиковых клеток, шипиковые клетки одновременно передают возбуждающие импульсы на пирамидные нейроны. Поэтому одновременно с растормаживанием происходит возбуждение пирамидных нейронов.

       МИЕЛОАРХИТЕКТОНИКА КОРЫ- это расположение нервных волокон. В коре есть ассоциативные нервные волокна, которые связывают отдельные участки одного полушария, есть комиссуральные волокна, соединяющие участки разных полушарий, имеются проекционные нервные волокна, идущие от коры к нижележащим центрам нервной системы. Имеются горизонтальные нервные волокна, расположенные на уровне молекулярного, внутреннего зернистого и ганглионарного слоев.

       МОЗГОВЫЕ ОБОЛОЧКИ. Мозг покрыт 3 оболочками: 1)мягкая мозговая оболочка (pia mater); 2)паутинная оболочка (arachnoidea); 3)твердая мозговая оболочка (dura mater).

       МЯГКАЯ МОЗГОВАЯ ОДОЛОЧКА представлена рыхлой соединительной тканью, повторяет ход извилин, в ней проходят кровеносные сосуды, нервные волокна, есть отдельные нейроны.

       ПАУТИННАЯ ОБОЛОЧКА не повторяет ход извилин, она как бы натянута между гребнями этих извилин. Между мягкой и паутинной оболочками имеется субарахноидальное пространство, заполненное жидкостью. От мягкой к паутинной оболочке проходят коллагеновые волокна.

       ТВЕРДАЯ МОЗГОВАЯ ОБОЛОЧКА прилежит к надкостнице, состоит из плотной оформленной соединительной ткани. Между твердой и паутинной оболочками имеется субдуральное пространство также заполненное жидкостью.

       В спинном мозге между твердой мозговой оболочкой и надкостницей позвонков имеется эпидуральное пространство, заполненное соединительной тканью.

       КРОВОСНАБЖЕНИЕ МОЗГА. В спинной мозг проникают переднекорешковые и заднекорешковые артерии, которые разветвляются в мягкой мозговой оболочке. Их мелкие ветви заходят в белое и серое вещество спинного мозга. Крупный артериальный ствол в основном проходит в области передней центральной вырезки спинного мозга. Вены проходят отдельно от артерий и локализуются в дорсальной части мягкой спинномозговой оболочки. Венозная кровь оттекает от спинного мозга через переднекорешковые и заднекорешковые вены.

       Кровеносная система головного мозга складыается из позвоночных и сонных артерий, которые сливаются и образуют базальные артерии. Базальные артерии разветвляются в мягкой мозговой оболочке, откуда мелкие артериальные ветви проникают белое и серое вещество.  Капилляры мозга имеют непрерывную эпителиальную выстилку и хорошо развитую базальную мембрану. Снаружи капилляры покрыты отростками волокнистых глиальных астроцитов. Поэтому стенка  капилляров обладае строго избирательной проницаемостью, не пропускающей вредные вещества в ткань мозга- гематоэнцефалический барьер.

                      ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА

       Эта система иннервирует внутренние органы, эндокринные и экзокринные железы, кровеносные и лимфатические сосуды. Вегетативная нервная система подразделяется на симпатическую и парасимпатическую. И в симпатической и парасимпатической нервных системах имеются центральные и периферические отделы.

       СИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА. Центральный отдел этой системы локализован в латерально- промежуточном ядре на уровне от I грудного до верхнепоясничного сегментов спинного мозга, периферический- в периферических симпатических паравертебральных и превертебральных ганглиях. Паравертебральные ганглии расположены справа и слева вдоль позвоночного столба в виде цепочки и образуют 2 симпатических ствола (truncus simpaticus). Превертебральных симпатических ганглиев три: 1)верхний брыжеечный; 2)нижний брыжеечный; 3)чревный, которые в совокупности образуют солнечное (брюшное) сплетение.

       ПЕРИФЕРИЧЕСКИЕ СИМПАТИЧЕСКИЕ ГАНГЛИИ покрыты соединительнотканной капсулой, от которой вглубь узла отходят тонкие прослойки соединительной ткани, образующие строму этих ганглиев. Нейроны ганглиев покрыты мантийными глиоцитами, образующими глиальную оболочку вокруг тел нейронов. Снаружи от глиальной оболочки распоагается тонкая соединительнотканная оболочка.

       Среди нейронов симпатических ганглиев имеется 2 разновидности:1)эфферентные нейроны и 2)малые интенсивно флюоресцирующие тормозные клетки (МИФ-клетки).

       ЭФФЕРЕНТНЫЕ нейроны мультиполярные, к ним подходят преганглиональные, миелиновые, холинергические нервные волокна (аксоны нейронов латеральнопромежуточного ядра спинного мозга), заканчивающиеся возбуждающими синапсами на эффекторных нейронах. Аксоны эфферентных нейронов в виде постганглионарных, безмиелиновых, адренергических нервных волокон направляются к рабочему органу (железе, гладкому миоциту, кровеносному сосуду).

       МИФ-клетки мультиполярные, мелкие, по функции тормозные, в их нейроплазме тел и отростков содержится норадреналин. К ним также подходят отростки нейронов латеральнопромежуточного ядра. Их асоны заканчиваются терминалями, в которых также содержится норадреналин. При поступлении импульса на МИФ- клетку, происходит выделение норадреналина из терминалей ее аксона. Норадреналин диффузно достигает эфферентных нейронов и вызывает их торможение.

       РЕФЛЕКТОРНАЯ ДУГА СИМПАТИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ состоит из цепи трех нейронов: 1)чувствительный нейрон спинального ганглия; 2)ассоциативно-эфферентный нейрон латерально- промежуточного ядра спинного мозга и 3)эфферентный нейрон симпатического нервного ганглия.

       ПАРАСИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА также имеет 2 отдела: центральный и периферический. Центральным отделом являются ядра III, VII, IX и X пар черепно-мозговых нервов ствола головного мозга и латеральнопромежуточное ядро пояснично- крестцового отдела спинного мозга.

       ПЕРИФЕРИЧЕСКИЙ ОТДЕЛ ПАРАСИМПАТИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ предс-тавлен интрамуральными нервными ганглиями (ганглиями, рсположенными во внутренних органах). Интрамуральные ганглии входят в состав нервных сплетений внутренних органов, покрыты соединительнотканной капсулой, от которой отходят ее тонкие прослойки, образующие соединительнотканную строму. В состав ганглиев входят 3 типа нейронов: 1) клетки Догеля I типа-эфферентные (длинноаксонные); 2) клетки Догеля II типа (равноотростчатые, чувствительные); 3) клетки Догеля III типа (ассоциативные),соединяющие нейрон одного ганглия с нейроном другого. Вокруг тел этих нейронов имеется глиальная оболочка, состоящая из видоизмененных олигодендроцтов (мантийных глиоцитов), и тонкая соединительнотканная. В состав ганглиев также входит микроглия (глиальные макрофаги).

       КЛЕТКИ I типа мультиполярные, эфферентные. К их дендритам подходят аксоны нейронов центрального отдела и аксоны нейронов 2-го типа этого же ганглия. Аксоны нейронов 1-го типа в виде постганглионарных безмиелиновых холинергических нервных волокон направляются к рабочим органам (миоцитам, железам).

       КЛЕТКИ II типа мультиполярные, чувствительные, равноотростчатые, т.е. их аксон и многочисленные дендриты имеют одинаковую длину. Дендриты заканчиваются рецепторами, аксон- синапсом на клетке 1-го типа.

       КЛЕТКИ III типа имеют несколько дендритов и длинный аксон, который направляется к соседнему интрамуральному ганглию и заканчивается синапсом на одном из его нейронов.

       РЕФЛЕКТОРНАЯ ДУГА  ПАРАСИМПАТИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ может быть трехнейронной и четырехнейронной. Трехнейронная рефлекторная дуга включает чувствительный нейрон, заложенный в спинальном ганглии или в чувствительном узле блуждающего, либо другого черепно-мозгового нерва, ассоциативно-эфферентный нейрон, заложенный в ядре черепно-мозгового нерва, или в латерально- промежуточном ядре поясничнокрестцового отдела спинного мозга; эфферентный нейрон (клетка 1-го типа) интрамурального ганглия, аксон которой в виде безмиелинового постганглионарного холинергического нервного волокна направляется к рабочему органу.

       Четырехнейронная рефлекторная дуга включает еще нейрон 2-го типа Догеля, от которого импульс передается на клетку 1-го типа Догеля.

      МЕСТНАЯ РЕФЛЕКТОРНАЯ ДУГА ПАРАСИМПАТИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ включает 2 нейрона: 1)клетка Догеля 2-го типа- первый нейрон; и 2)клетка Догеля 1-го типа- второй нейрон рефлекторной дуги.

       ОСОБЕННОСТИ СТРОЕНИЯ ИНТРАМУРАЛЬНЫХ ГАНГЛИЕВ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ. В желудочно-кишечном тракте имеются 3 сплетения: 1)субсерозное; 2)межмышечное и 3)подслизистое. Самое мощное сплетение- межмышечное. В нервных ганглиях этого сплетения имеются не только эффекторные (клетки Догеля 1-го типа), но и адренергические, содержащие катехоламины. При возбуждении адренергических нейронов из терминалей их аксонов  выделяются катехоламины, которые диффузно достигают эфферентных нейронов, вызывая их торможение.

       В этих ганглиях имеются пуринергические нейроны, медиатором которых является пурин. Кроме того эти ганглии содержат нейросекреторные клетки, вырабатывающие ВИП (вазоактивный интестинальный пептид), вещество Р, серотонин, гистамин и др. вещества.

       ФУНКЦИИ НЕРВНОЙ СИСТЕМЫ: интегрирующая, адаптационная, регулирующая, связь организма с внешней средой.

Понравилась статья? Поделить с друзьями:
  • Аксонами альфа мотонейронов
  • Аксонам двигательных нейронов 2 аксонам вставочных нейронов
  • Аксона стройматериалы нижний новгород
  • Аксона стройматериалы во владимире каталог товаров
  • Аксон ящик для хранения