Как выполнить аксоном

Аксон – это волокнистая ось, отходящая от тела нейрона, покрытая миелиновым слоем, обеспечивающая связь с другими нейронами и клетками рабочих органов. Представляет собой удлиненный осевой отросток, по которому передаются потенциалы действия (возбуждения), что делает его важнейшим структурным элементом ЦНС.

аксон

Определение

Мозговое вещество – высокоорганизованная структура, образованная нервными клетками, от которых отходят аксоны. Из нервных клеток состоит мозговая ткань. Аксон в переводе с греческого означает «ось» – это такой отросток, элемент мозгового вещества, который обеспечивает взаимодействие между клетками разного типа (нейроны, клетки иннервируемых органов), что ассоциируется с тонким, четким управлением работой органов и систем. Функции ткани ЦНС:

  1. Воспринимает раздражения, преобразуя их в импульсы.
  2. Поддерживает передачу импульсов от управляющих отделов мозга к исполнительным органам.
  3. Формирует ответную реакцию на раздражающее воздействие.
  4. Обеспечивает взаимодействие в работе систем и органов, поддерживает интеграцию структурных единиц организма.
  5. Обеспечивает взаимосвязь организма с внешней средой.

Согласно определению в биологии, аксон (англ. axon) – удлиненный отросток, по которому идут импульсы от тела нейрона к другим нервным клеткам и структурным элементам всех тканей организма. Мозговая ткань в период внутриутробного развития образуется из нервной пластины. Края пластинки прогибаются, что приводит к формированию валиков и желобка. В результате смыкания краев валиков возникает нервная трубка – основа ЦНС.

Дифференциация клеток, образующих трубку, приводит к появлению нейробластов и спонгиобластов. Первые служат основой для формирования нейронов, вторые – для образования нейроглии. Нейроны (анат.) – основные структурные элементы мозгового вещества. Они характеризуются отсутствием функции деления, что приводит к постепенному уменьшению их численности. Тело нейрона состоит из ядра и цитоплазмы. В зависимости от типа нейронов меняется геометрическая форма тела, которая бывает круглая, овальная, пирамидальная и другая.

строение нейрона

Цитоскелет, состоящий из микротрубочек и нейрофибриллов, обеспечивает опорную и трофическую функцию. Цитоскелет поддерживает форму нейрона, обеспечивает транспорт веществ и органелл. От тела ответвляются отростки – единичный аксон и множественные дендриты. Аксон нейрона почти не ветвится, иногда образует коллатеральные (обходные) сегменты. Концевые сегменты (окончания) разветвляются, называются терминали.

Терминали взаимосвязаны с окончаниями других нейронов и с клетками, образующими паренхиму (ткань) рабочих органов – мышц, желез. Количество дендритов варьируется от 1 до нескольких. Тонкие ответвления дендритов оканчиваются небольшими шипами, где сосредоточены терминали аксональных отростков многих тысяч других клеток. Дендриты воспринимают раздражения или потенциалы действия от других клеток и передают их по волокнам к телу своего нейрона.

Рост аксона зависит от особенностей строения и жизнедеятельности нейрона, который поддерживает функцию питания отростка. К примеру, если перерезать аксональный ствол, сегмент, связанный с телом, остается жизнеспособным и продолжает деятельность, участок, утративший связь с телом, отмирает. Аксоны образуют нервы, что предполагает сложную структурно-морфологическую организацию ЦНС.

цнс человека

Строение

Аксон – это длинный отросток нейрона, который обеспечивает взаимодействие между нервными клетками. Согласно анатомии, аксон ответвляется от холмика, находящегося на теле. Холмик аксона представляет собой структуру, где постсинаптический потенциал преобразуется в биоэлектрический сигнал. Чтобы в холмике происходила генерация биоэлектрических сигналов, необходима согласованная деятельность каналов –натриевых, кальциевых, нескольких типов калиевых.

Длина аксона у человека существенно варьируется в зависимости от вида нейрона, от которого отходит аксональная ось. Минимальная длина – около 1 миллиметра, максимальная – около 1,5 метров. Длина более 1 метра наблюдается в случаях, когда отросток отходит от спинного мозга в область конечностей. Диаметр аксональной оси также неодинаковый у разных типов клеток, равен около 1-20 микрон. Импульсы проходят быстрее по аксональным осям большего диаметра.

Размеры аксонального отростка нередко достигают 99% от общего объема нервной клетки, в структуру которой он входит. Аксон состоит из протоплазмы (аксоплазмы), где находятся тончайшие волокна, белковые нити – нейрофибриллы, из чего образован ствол аксонального ответвления. Согласно одной из теорий, нейрофибриллы – проводники питательных веществ. Аксональная протоплазма также содержит митохондрии и микротрубочки, которые представляют собой самые крупные элементы цитоскелета.

Диаметр микротрубочек составляет около 24 нанометров. Они обеспечивают внутриклеточный транспорт веществ, в том числе поддерживают трофику аксональных отростков. Тело (перикарион) – источник протеинов и нейромедиаторов, распространяющихся по аксональной оси посредством микротрубочек, которые у аксона имеют направленную полярную ориентацию (в отличие от микротрубочек дендритов).

Положительно заряженные концы микротрубочек направлены к сегменту терминали, отрицательно заряженные концы – к телу. Строение аксона предполагает наличие оболочки. Аксон покрыт глиальным (миелиновым) слоем по всей длине, чем защищен от разрушающих внешних воздействий. Миелиновый слой в аксональных отростках периферического отдела сформирован клетками Шванна.

Миелиновая оболочка, покрывающая нервную ось, обеспечивает ее механическую прочность, электрохимическую изоляцию, трофику (питание). Миелиновый слой ускоряет проведение биоэлектрических сигналов. Нервы – пучки объединенных аксональных отростков, которые покрыты оболочкой из соединительной ткани и снабжены кровеносными сосудами.

 Функции

Основная задача нейронов – переработка данных. С их помощью осуществляется получение, обработка, передача информации отделам нервной и других систем организма.

Если дендриты проводят сигналы по направлению к телу нервной клетки (перикариону), то аксональный отросток передает импульсы от перикариона к другим клеткам.

Основная функция аксонов – проведение импульсов в пределах нейрональной сети и к исполнительным органам. Аксональные ответвления относятся к первичным проводниковым путям в нервной системе. Вспомогательная функция – транспорт веществ. При помощи аксонального транспорта осуществляется движение белков, синтезированных в теле, нейромедиаторов, органелл. Многие вещества способны двигаться в обоих направлениях.

аксональный транспорт

В периферических сегментах аксона в него могут проникать вирусы и токсичные вещества, которые перемещаясь к телу нервной клетки, повреждают ее. Аксональный транспорт зависит от количества энергии АТФ. Если энергетический уровень АТФ понижается больше, чем в 2 раза, происходит блокировка аксонального транспорта.

Функции аксона заключаются в передаче импульсов. При взаимодействии аксона с телом другого нейрона образуется аксосоматический контакт. Если аксон взаимодействует с дендритами других клеток возникает аксодендритический контакт. Взаимодействие с аксоном другой клетки приводит к образованию аксо-аксонального контакта, который редко происходит в нервной системе, поддерживает тормозные рефлекторные реакции.

Особенности регенерации нервной ткани

Нервные клетки почти полностью лишены способности к регенерации. Однако нервные клетки способны восстанавливать поврежденные или утраченные ответвления. Процесс регенерации аксона возможен, если тело сохраняет жизнеспособность, и на пути роста аксонального отростка отсутствуют препятствия. В ходе процесса регенерации отросток вновь прорастает к органу-мишени.

Восстановление нервной проводимости в мышцах с нарушенной иннервацией – один из критериев успешного лечения невропатий разного генеза. При невропатиях травматического генеза восстановление функций мышц происходит за счет регенерации ствола прерванного аксона и ремиелинизации отростка (восстановление миелиновой оболочки). Периферический отдел нервной системы обладает более высоким потенциалом регенерационных возможностей в сравнении с центральным отделом.

Восстановление иннервации в мышечной или кожной ткани происходит благодаря сохранившимся аксонам, которые начинают ускоренно разрастаться и ветвиться. Процесс ветвления аксонов в зоне перехватов Ранвье (периодические разрывы миелинового слоя) получил название «спрутинг». В результате происходит частичное или полное возобновление первичной иннервации.

синаптический спрутинг

В ходе экспериментов установлено, что близлежащие интактные (не вовлеченные в патологический процесс) аксоны выпускают нервные волокна, которые иннервируют участок мускулатуры или кожных покровов с нарушенной проводимостью нервных импульсов. Различают виды спрутинга – коллатеральный (обходной) и регенераторный (терминальный).

Регенераторный спрутинг начинается после устранения в нейронах ретроградных изменений, обусловленных аксонотомией (повреждением, рассечением нервной оси). Это связано с потребностью в продукции аппарата ядра нервной клетки, производящего протеины. Материал, необходимый для регенераторного спрутинга, продуцируется в теле и транспортируется по микротрубочкам по всей длине оси. Параллельно происходит процесс ремиелинизации осевого ствола.

Аксон – удлиненный отросток нервной клетки, обеспечивающий взаимодействие между структурными элементами мозговой ткани и связь ЦНС с исполнительными органами.

Просмотров: 2 336

Axons are very thin nerve fibers that carry nerve impulses away from a neuron (nerve cell) to another neuron. A neuron is responsible for receiving sensory input, sending motor commands to your muscles, and transforming and relaying the electrical signals throughout these processes. Every neuron has one axon that connects it with other neurons or with muscle or gland cells.

Axons come in all lengths, with some spanning the entire length of your body from your spinal cord to your toes. Axons are generally thinner than a piece of human hair.

koto_feja / Getty Images

Structure

Every nerve has axons. The larger the diameter of the axon, the more quickly it can transmit messages. In the innermost part of the nerve are axons that can be typically found inside a myelin sheath.

Myelin is a fatty protective substance that acts as insulation for axons, helping to send signals over long distances. For this reason, myelin is mostly found in neurons that connect different brain regions, rather than in the neurons whose axons remain in the local region.

Function

Axons help with the cable transmission between neurons. They form side branches called axon collaterals so they can send messages to several neurons at once.

These branches split into smaller extensions known as axon terminal branches, or nerve terminals. Each terminal holds a synapse where neurotransmitters send their messages and where messages are received. 

Simply put, axons allow nerve cells to send electrical and chemical messages to other nerve, gland, and muscle cells using this internal communication process. 

Axon vs. Dendrite

Dendrite is another part of a neuron. It is where a neuron receives input from another cell. Axons and dendrites are both made of fibrous root-resembling materials, but they differ in several ways:

  • Length: Axons are generally much longer than dendrites. 
  • Cell location: Axons are found at the specialized location on a cell body called the axon hillock. Dendrites are seen as branching away from the cell body into what’s called dendritic trees due to their appearance. 
  • Function: The two work together. Axons help messages move through your body systems, and dendrites receive and process those messages from the axons. 
  • Quantity: A neuron may have just one axon, while it may have more than one set of dendrites. 

Types 

A nerve contains bundles of nerve fibers, either axons or dendrites, surrounded by connective tissue. Different types of nerves contain different types of fibers.

Sensory Fibers

Sensory fibers pass impulses or messages from sensors to the brain and toward the central nervous system. These fibers are responsible for sensations like interpreting touch, pressure, temperature, and pain.

Motor Fibers

Motor fibers are behind why you tense your shoulders in response to a potential threat. They send messages to your muscles and glands in response to stimuli, including damage or physical traumas like accidents.

Damage

Acute axon damage is serious and life changing. Severe and diffuse axonal injuries can explain why people with head injury may be limited by a vegetative state. Axonal tears have been linked to lesions responsible for loss of consciousness in people who experience mild head injuries or concussions. Axon damage can result in axon degeneration (loss) and can eventually kill the underlying nerve.

What Causes Head Trauma?

Head trauma can occur from different types of injury, including:

  • Physical impact from an event like a motor-vehicle accident or falling from a height 
  • Injury from an assault or sport injury hemorrhage, contusion, or hematoma
  • Scattered brain bruising (contusion)
  • Internal bleeding outside of the blood vessel (hematoma)

Axon loss is an early sign of neurodegenerative diseases like:

  • Alzheimer’s disease and other memory disorders
  • Huntington’s disease
  • Parkinson’s disease
  • Amyotrophic lateral sclerosis (ALS)

Demyelination

When the fatty myelin sheath begins to thin, a process known as demyelination, the axon’s ability to send signals may become impaired. Some disease states can cause this myelin breakdown.

While the sheath can technically repair itself, damage can be severe enough to kill the underlying nerve fiber. These nerve fibers in the central nervous system cannot fully regenerate.

A demyelinated axon transmits impulses up to 10 times slower than a normal myelinated axon, and a complete stop of the transmission is also possible.

Conditions that can cause demyelination include:

  • Multiple sclerosis (MS): MS occurs when the immune system attacks myelin in the brain and spinal cord.
  • Acute disseminated encephalomyelitis (ADEM): This is characterized by a brief but widespread attack of inflammation in the brain and spinal cord that damages myelin.

Frequently Asked Questions

What is the axon hillock?

In the nervous system, the axon hillock is a specialized location on a cell body (soma) where the neuron connects to an axon. It controls the firing of neurons. 

What are axon terminals?

Axon terminals are located at the end of an axon. This is where messages from neurotransmitters are sent and received.

How does myelin “insulate” an axon?

Myelin insulates an axon by surrounding the thin fiber with a layer of fatty substance protection. This layer is located between the axon and its covering (the endoneurium).

Summary

An axon is a thin fiber that extends from a neuron, or nerve cell, and is responsible for transmitting electrical signals to help with sensory perception and movement. Each axon is surrounded by a myelin sheath, a fatty layer that insulates the axon and helps it transmit signals over long distances.

Verywell Health uses only high-quality sources, including peer-reviewed studies, to support the facts within our articles. Read our editorial process to learn more about how we fact-check and keep our content accurate, reliable, and trustworthy.

  1. Du F, Cooper AJ, Thida T, Shinn AK, Cohen BM, Ongür D. Myelin and axon abnormalities in schizophrenia measured with magnetic resonance imaging techniques. Biol Psychiatry. 2013;74(6):451-457. doi:10.1016/j.biopsych.2013.03.003

  2. The University of Queensland. Axons: the cable transmission of neurons.

  3. National Cancer Institute. The peripheral nervous system.

  4. Guedan-Duran A, Jemni-Damer N, Orueta-Zenarruzabeitia I, et al. Biomimetic approaches for separated regeneration of sensory and motor fibers in amputee people: necessary conditions for functional integration of sensory-motor prostheses with the peripheral nerves. Front Bioeng Biotechnol. 2020 Nov 3;8:584823. doi:10.3389/fbioe.2020.584823

  5. Medana IM, Esiri MM. Axonal damage: a key predictor of outcome in human CNS diseases. Brain. 2003 Mar;126(Pt 3):515-530. doi:10.1093/brain/awg061

  6. UCLA Health. Cerebral contusion and intracerebral hematoma. 

  7. Ding C, Hammarlund M. Mechanisms of injury-induced axon degeneration. Curr Opin Neurobiol. 2019 Aug;57:171-178. doi:10.1016/j.conb.2019.03.006

  8. Adamczyk B, Adamczyk-Sowa M. New insights into the role of oxidative stress mechanisms in the pathophysiology and treatment of multiple sclerosis. Oxid Med Cell Longev. 2016 Oct 18;1973834. doi:10.1155/2016/1973834

  9. Haines JD, Inglese M, Casaccia P. Axonal damage in multiple sclerosis. Mt Sinai J Med. 2011;78(2):231-243. doi:10.1002/msj.20246

By Michelle Pugle

Michelle Pugle, BA, MA, is an expert health writer with nearly a decade of contributing accurate and accessible health news and information to authority websites and print magazines. Her work focuses on lifestyle management, chronic illness, and mental health. Michelle is the author of Ana, Mia & Me: A Memoir From an Anorexic Teen Mind. 

Thanks for your feedback!

Axon
Blausen 0657 MultipolarNeuron.png

An axon of a multipolar neuron

Identifiers
MeSH D001369
FMA 67308
Anatomical terminology

[edit on Wikidata]

An axon (from Greek ἄξων áxōn, axis), or nerve fiber (or nerve fibre: see spelling differences), is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action potentials away from the nerve cell body. The function of the axon is to transmit information to different neurons, muscles, and glands. In certain sensory neurons (pseudounipolar neurons), such as those for touch and warmth, the axons are called afferent nerve fibers and the electrical impulse travels along these from the periphery to the cell body and from the cell body to the spinal cord along another branch of the same axon. Axon dysfunction can be the cause of many inherited and acquired neurological disorders that affect both the peripheral and central neurons. Nerve fibers are classed into three types – group A nerve fibers, group B nerve fibers, and group C nerve fibers. Groups A and B are myelinated, and group C are unmyelinated. These groups include both sensory fibers and motor fibers. Another classification groups only the sensory fibers as Type I, Type II, Type III, and Type IV.

An axon is one of two types of cytoplasmic protrusions from the cell body of a neuron; the other type is a dendrite. Axons are distinguished from dendrites by several features, including shape (dendrites often taper while axons usually maintain a constant radius), length (dendrites are restricted to a small region around the cell body while axons can be much longer), and function (dendrites receive signals whereas axons transmit them). Some types of neurons have no axon and transmit signals from their dendrites. In some species, axons can emanate from dendrites known as axon-carrying dendrites.[1] No neuron ever has more than one axon; however in invertebrates such as insects or leeches the axon sometimes consists of several regions that function more or less independently of each other.[2]

Axons are covered by a membrane known as an axolemma; the cytoplasm of an axon is called axoplasm. Most axons branch, in some cases very profusely. The end branches of an axon are called telodendria. The swollen end of a telodendron is known as the axon terminal which joins the dendron or cell body of another neuron forming a synaptic connection. Axons make contact with other cells – usually other neurons but sometimes muscle or gland cells – at junctions called synapses. In some circumstances, the axon of one neuron may form a synapse with the dendrites of the same neuron, resulting in an autapse. At a synapse, the membrane of the axon closely adjoins the membrane of the target cell, and special molecular structures serve to transmit electrical or electrochemical signals across the gap. Some synaptic junctions appear along the length of an axon as it extends; these are called en passant («in passing») synapses and can be in the hundreds or even the thousands along one axon.[3] Other synapses appear as terminals at the ends of axonal branches.

A single axon, with all its branches taken together, can innervate multiple parts of the brain and generate thousands of synaptic terminals. A bundle of axons make a nerve tract in the central nervous system,[4] and a fascicle in the peripheral nervous system. In placental mammals the largest white matter tract in the brain is the corpus callosum, formed of some 200 million axons in the human brain.[4]

Anatomy[edit]

A typical myelinated axon

Axons are the primary transmission lines of the nervous system, and as bundles they form nerves. Some axons can extend up to one meter or more while others extend as little as one millimeter. The longest axons in the human body are those of the sciatic nerve, which run from the base of the spinal cord to the big toe of each foot. The diameter of axons is also variable. Most individual axons are microscopic in diameter (typically about one micrometer (µm) across). The largest mammalian axons can reach a diameter of up to 20 µm. The squid giant axon, which is specialized to conduct signals very rapidly, is close to 1 millimeter in diameter, the size of a small pencil lead. The numbers of axonal telodendria (the branching structures at the end of the axon) can also differ from one nerve fiber to the next. Axons in the central nervous system (CNS) typically show multiple telodendria, with many synaptic end points. In comparison, the cerebellar granule cell axon is characterized by a single T-shaped branch node from which two parallel fibers extend. Elaborate branching allows for the simultaneous transmission of messages to a large number of target neurons within a single region of the brain.

There are two types of axons in the nervous system: myelinated and unmyelinated axons.[5] Myelin is a layer of a fatty insulating substance, which is formed by two types of glial cells: Schwann cells and oligodendrocytes. In the peripheral nervous system Schwann cells form the myelin sheath of a myelinated axon. Oligodendrocytes form the insulating myelin in the CNS. Along myelinated nerve fibers, gaps in the myelin sheath known as nodes of Ranvier occur at evenly spaced intervals. The myelination enables an especially rapid mode of electrical impulse propagation called saltatory conduction.

The myelinated axons from the cortical neurons form the bulk of the neural tissue called white matter in the brain. The myelin gives the white appearance to the tissue in contrast to the grey matter of the cerebral cortex which contains the neuronal cell bodies. A similar arrangement is seen in the cerebellum. Bundles of myelinated axons make up the nerve tracts in the CNS. Where these tracts cross the midline of the brain to connect opposite regions they are called commissures. The largest of these is the corpus callosum that connects the two cerebral hemispheres, and this has around 20 million axons.[4]

The structure of a neuron is seen to consist of two separate functional regions, or compartments – the cell body together with the dendrites as one region, and the axonal region as the other.

Axonal region[edit]

The axonal region or compartment, includes the axon hillock, the initial segment, the rest of the axon, and the axon telodendria, and axon terminals. It also includes the myelin sheath. The Nissl bodies that produce the neuronal proteins are absent in the axonal region.[3] Proteins needed for the growth of the axon, and the removal of waste materials, need a framework for transport. This axonal transport is provided for in the axoplasm by arrangements of microtubules and intermediate filaments known as neurofilaments.

Axon hillock[edit]

Detail showing microtubules at axon hillock and initial segment.

The axon hillock is the area formed from the cell body of the neuron as it extends to become the axon. It precedes the initial segment. The received action potentials that are summed in the neuron are transmitted to the axon hillock for the generation of an action potential from the initial segment.

Axonal initial segment[edit]

The axonal initial segment (AIS) is a structurally and functionally separate microdomain of the axon.[6][7] One function of the initial segment is to separate the main part of an axon from the rest of the neuron; another function is to help initiate action potentials.[8] Both of these functions support neuron cell polarity, in which dendrites (and, in some cases the soma) of a neuron receive input signals at the basal region, and at the apical region the neuron’s axon provides output signals.[9]

The axon initial segment is unmyelinated and contains a specialized complex of proteins. It is between approximately 20 and 60 µm in length and functions as the site of action potential initiation.[10][11] Both the position on the axon and the length of the AIS can change showing a degree of plasticity that can fine-tune the neuronal output.[10][12] A longer AIS is associated with a greater excitability.[12] Plasticity is also seen in the ability of the AIS to change its distribution and to maintain the activity of neural circuitry at a constant level.[13]

The AIS is highly specialized for the fast conduction of nerve impulses. This is achieved by a high concentration of voltage-gated sodium channels in the initial segment where the action potential is initiated.[13] The ion channels are accompanied by a high number of cell adhesion molecules and scaffolding proteins that anchor them to the cytoskeleton.[10] Interactions with ankyrin G are important as it is the major organizer in the AIS.[10]

Axonal transport[edit]

The axoplasm is the equivalent of cytoplasm in the cell. Microtubules form in the axoplasm at the axon hillock. They are arranged along the length of the axon, in overlapping sections, and all point in the same direction – towards the axon terminals.[14] This is noted by the positive endings of the microtubules. This overlapping arrangement provides the routes for the transport of different materials from the cell body.[14] Studies on the axoplasm has shown the movement of numerous vesicles of all sizes to be seen along cytoskeletal filaments – the microtubules, and neurofilaments, in both directions between the axon and its terminals and the cell body.

Outgoing anterograde transport from the cell body along the axon, carries mitochondria and membrane proteins needed for growth to the axon terminal. Ingoing retrograde transport carries cell waste materials from the axon terminal to the cell body.[15] Outgoing and ingoing tracks use different sets of motor proteins.[14] Outgoing transport is provided by kinesin, and ingoing return traffic is provided by dynein. Dynein is minus-end directed.[15] There are many forms of kinesin and dynein motor proteins, and each is thought to carry a different cargo.[14] The studies on transport in the axon led to the naming of kinesin.[14]

Myelination[edit]

TEM of a myelinated axon in cross-section.

In the nervous system, axons may be myelinated, or unmyelinated. This is the provision of an insulating layer, called a myelin sheath. The myelin membrane is unique in its relatively high lipid to protein ratio.[16]

In the peripheral nervous system axons are myelinated by glial cells known as Schwann cells. In the central nervous system the myelin sheath is provided by another type of glial cell, the oligodendrocyte. Schwann cells myelinate a single axon. An oligodendrocyte can myelinate up to 50 axons.[17]

The composition of myelin is different in the two types. In the CNS the major myelin protein is proteolipid protein, and in the PNS it is myelin basic protein.

Nodes of Ranvier[edit]

Nodes of Ranvier (also known as myelin sheath gaps) are short unmyelinated segments of a myelinated axon, which are found periodically interspersed between segments of the myelin sheath. Therefore, at the point of the node of Ranvier, the axon is reduced in diameter.[18] These nodes are areas where action potentials can be generated. In saltatory conduction, electrical currents produced at each node of Ranvier are conducted with little attenuation to the next node in line, where they remain strong enough to generate another action potential. Thus in a myelinated axon, action potentials effectively «jump» from node to node, bypassing the myelinated stretches in between, resulting in a propagation speed much faster than even the fastest unmyelinated axon can sustain.

Axon terminals[edit]

An axon can divide into many branches called telodendria (Greek for ‘end of tree’). At the end of each telodendron is an axon terminal (also called a synaptic bouton, or terminal bouton). Axon terminals contain synaptic vesicles that store the neurotransmitter for release at the synapse. This makes multiple synaptic connections with other neurons possible. Sometimes the axon of a neuron may synapse onto dendrites of the same neuron, when it is known as an autapse.

Action potentials[edit]

Structure of a typical chemical synapse

An illustrated chemical synapse

Postsynaptic
density

Voltage-
gated Ca++
channel

Synaptic
vesicle

Neurotransmitter
transporter

Receptor

Neurotransmitter

Axon terminal

Synaptic cleft

Dendrite

Most axons carry signals in the form of action potentials, which are discrete electrochemical impulses that travel rapidly along an axon, starting at the cell body and terminating at points where the axon makes synaptic contact with target cells. The defining characteristic of an action potential is that it is «all-or-nothing» – every action potential that an axon generates has essentially the same size and shape. This all-or-nothing characteristic allows action potentials to be transmitted from one end of a long axon to the other without any reduction in size. There are, however, some types of neurons with short axons that carry graded electrochemical signals, of variable amplitude.

When an action potential reaches a presynaptic terminal, it activates the synaptic transmission process. The first step is rapid opening of calcium ion channels in the membrane of the axon, allowing calcium ions to flow inward across the membrane. The resulting increase in intracellular calcium concentration causes synaptic vesicles (tiny containers enclosed by a lipid membrane) filled with a neurotransmitter chemical to fuse with the axon’s membrane and empty their contents into the extracellular space. The neurotransmitter is released from the presynaptic nerve through exocytosis. The neurotransmitter chemical then diffuses across to receptors located on the membrane of the target cell. The neurotransmitter binds to these receptors and activates them. Depending on the type of receptors that are activated, the effect on the target cell can be to excite the target cell, inhibit it, or alter its metabolism in some way. This entire sequence of events often takes place in less than a thousandth of a second. Afterward, inside the presynaptic terminal, a new set of vesicles is moved into position next to the membrane, ready to be released when the next action potential arrives. The action potential is the final electrical step in the integration of synaptic messages at the scale of the neuron.[5]

(A) pyramidal cell, interneuron, and short durationwaveform (Axon), overlay of the three average waveforms;
(B) Average and standard error of peak-trough time for pyramidal cells interneurons, and putative axons;
(C) Scatter plot of signal to noise ratios for individual units againstpeak-trough time for axons, pyramidal cells (PYR) and interneurons (INT).

Extracellular recordings of action potential propagation in axons has been demonstrated in freely moving animals. While extracellular somatic action potentials have been used to study cellular activity in freely moving animals such as place cells, axonal activity in both white and gray matter can also be recorded. Extracellular recordings of axon action potential propagation is distinct from somatic action potentials in three ways: 1. The signal has a shorter peak-trough duration (~150μs) than of pyramidal cells (~500μs) or interneurons (~250μs). 2. The voltage change is triphasic. 3. Activity recorded on a tetrode is seen on only one of the four recording wires. In recordings from freely moving rats, axonal signals have been isolated in white matter tracts including the alveus and the corpus callosum as well hippocampal gray matter.[19]

In fact, the generation of action potentials in vivo is sequential in nature, and these sequential spikes constitute the digital codes in the neurons. Although previous studies indicate an axonal origin of a single spike evoked by short-term pulses, physiological signals in vivo trigger the initiation of sequential spikes at the cell bodies of the neurons.[20][21]

In addition to propagating action potentials to axonal terminals, the axon is able to amplify the action potentials, which makes sure a secure propagation of sequential action potentials toward the axonal terminal. In terms of molecular mechanisms, voltage-gated sodium channels in the axons possess lower threshold and shorter refractory period in response to short-term pulses.[22]

Development and growth[edit]

Development[edit]

The development of the axon to its target, is one of the six major stages in the overall development of the nervous system.[23] Studies done on cultured hippocampal neurons suggest that neurons initially produce multiple neurites that are equivalent, yet only one of these neurites is destined to become the axon.[24] It is unclear whether axon specification precedes axon elongation or vice versa,[25] although recent evidence points to the latter. If an axon that is not fully developed is cut, the polarity can change and other neurites can potentially become the axon. This alteration of polarity only occurs when the axon is cut at least 10 μm shorter than the other neurites. After the incision is made, the longest neurite will become the future axon and all the other neurites, including the original axon, will turn into dendrites.[26] Imposing an external force on a neurite, causing it to elongate, will make it become an axon.[27] Nonetheless, axonal development is achieved through a complex interplay between extracellular signaling, intracellular signaling and cytoskeletal dynamics.

[edit]

The extracellular signals that propagate through the extracellular matrix surrounding neurons play a prominent role in axonal development.[28] These signaling molecules include proteins, neurotrophic factors, and extracellular matrix and adhesion molecules.
Netrin (also known as UNC-6) a secreted protein, functions in axon formation. When the UNC-5 netrin receptor is mutated, several neurites are irregularly projected out of neurons and finally a single axon is extended anteriorly.[29][30][31][32] The neurotrophic factors – nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NTF3) are also involved in axon development and bind to Trk receptors.[33]

The ganglioside-converting enzyme plasma membrane ganglioside sialidase (PMGS), which is involved in the activation of TrkA at the tip of neutrites, is required for the elongation of axons. PMGS asymmetrically distributes to the tip of the neurite that is destined to become the future axon.[34]

Intracellular signaling[edit]

During axonal development, the activity of PI3K is increased at the tip of destined axon. Disrupting the activity of PI3K inhibits axonal development. Activation of PI3K results in the production of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns) which can cause significant elongation of a neurite, converting it into an axon. As such, the overexpression of phosphatases that dephosphorylate PtdIns leads into the failure of polarization.[28]

Cytoskeletal dynamics[edit]

The neurite with the lowest actin filament content will become the axon. PGMS concentration and f-actin content are inversely correlated; when PGMS becomes enriched at the tip of a neurite, its f-actin content is substantially decreased.[34] In addition, exposure to actin-depolimerizing drugs and toxin B (which inactivates Rho-signaling) causes the formation of multiple axons. Consequently, the interruption of the actin network in a growth cone will promote its neurite to become the axon.[35]

Growth[edit]

Axon of nine-day-old mouse with growth cone visible

Growing axons move through their environment via the growth cone, which is at the tip of the axon. The growth cone has a broad sheet-like extension called a lamellipodium which contain protrusions called filopodia. The filopodia are the mechanism by which the entire process adheres to surfaces and explores the surrounding environment. Actin plays a major role in the mobility of this system. Environments with high levels of cell adhesion molecules (CAMs) create an ideal environment for axonal growth. This seems to provide a «sticky» surface for axons to grow along. Examples of CAMs specific to neural systems include N-CAM, TAG-1 – an axonal glycoprotein[36] – and MAG, all of which are part of the immunoglobulin superfamily. Another set of molecules called extracellular matrix-adhesion molecules also provide a sticky substrate for axons to grow along. Examples of these molecules include laminin, fibronectin, tenascin, and perlecan. Some of these are surface bound to cells and thus act as short range attractants or repellents. Others are difusible ligands and thus can have long range effects.

Cells called guidepost cells assist in the guidance of neuronal axon growth. These cells that help axon guidance, are typically other neurons that are sometimes immature. When the axon has completed its growth at its connection to the target, the diameter of the axon can increase by up to five times, depending on the speed of conduction required.[37]

It has also been discovered through research that if the axons of a neuron were damaged, as long as the soma (the cell body of a neuron) is not damaged, the axons would regenerate and remake the synaptic connections with neurons with the help of guidepost cells. This is also referred to as neuroregeneration.[38]

Nogo-A is a type of neurite outgrowth inhibitory component that is present in the central nervous system myelin membranes (found in an axon). It has a crucial role in restricting axonal regeneration in adult mammalian central nervous system. In recent studies, if Nogo-A is blocked and neutralized, it is possible to induce long-distance axonal regeneration which leads to enhancement of functional recovery in rats and mouse spinal cord. This has yet to be done on humans.[39] A recent study has also found that macrophages activated through a specific inflammatory pathway activated by the Dectin-1 receptor are capable of promoting axon recovery, also however causing neurotoxicity in the neuron.[40]

Length regulation[edit]

Axons vary largely in length from a few micrometers up to meters in some animals. This emphasizes that there must be a cellular length regulation mechanism allowing the neurons both to sense the length of their axons and to control their growth accordingly. It was discovered that motor proteins play an important role in regulating the length of axons.[41] Based on this observation, researchers developed an explicit model for axonal growth describing how motor proteins could affect the axon length on the molecular level.[42][43][44][45] These studies suggest that motor proteins carry signaling molecules from the soma to the growth cone and vice versa whose concentration oscillates in time with a length-dependent frequency.

Classification[edit]

The axons of neurons in the human peripheral nervous system can be classified based on their physical features and signal conduction properties. Axons were known to have different thicknesses (from 0.1 to 20 µm)[3] and these differences were thought to relate to the speed at which an action potential could travel along the axon – its conductance velocity. Erlanger and Gasser proved this hypothesis, and identified several types of nerve fiber, establishing a relationship between the diameter of an axon and its nerve conduction velocity. They published their findings in 1941 giving the first classification of axons.

Axons are classified in two systems. The first one introduced by Erlanger and Gasser, grouped the fibers into three main groups using the letters A, B, and C. These groups, group A, group B, and group C include both the sensory fibers (afferents) and the motor fibers (efferents). The first group A, was subdivided into alpha, beta, gamma, and delta fibers – Aα, Aβ, Aγ, and Aδ. The motor neurons of the different motor fibers, were the lower motor neurons – alpha motor neuron, beta motor neuron, and gamma motor neuron having the Aα, Aβ, and Aγ nerve fibers, respectively.

Later findings by other researchers identified two groups of Aa fibers that were sensory fibers. These were then introduced into a system that only included sensory fibers (though some of these were mixed nerves and were also motor fibers). This system refers to the sensory groups as Types and uses Roman numerals: Type Ia, Type Ib, Type II, Type III, and Type IV.

Motor[edit]

Lower motor neurons have two kind of fibers:

Motor fiber types

Type Erlanger-Gasser
Classification
Diameter
(µm)
Myelin Conduction velocity
(meters/second)
Associated muscle fibers
Alpha (α) motor neuron 13–20 Yes 80–120 Extrafusal muscle fibers
Beta (β) motor neuron
Gamma (γ) motor neuron 5-8 Yes 4–24[46][47] Intrafusal muscle fibers

Sensory[edit]

Different sensory receptors innervate different types of nerve fibers. Proprioceptors are innervated by type Ia, Ib and II sensory fibers, mechanoreceptors by type II and III sensory fibers and nociceptors and thermoreceptors by type III and IV sensory fibers.

Sensory fiber types

Type Erlanger-Gasser
Classification
Diameter
(µm)
Myelin Conduction
velocity (m/s)
Associated sensory receptors Proprioceptors Mechanoceptors Nociceptors and
thermoreceptors
Ia 13–20 Yes 80–120 Primary receptors of muscle spindle (annulospiral ending)
Ib 13–20 Yes 80–120 Golgi tendon organ
II 6–12 Yes 33–75 Secondary receptors of muscle spindle (flower-spray ending).
All cutaneous mechanoreceptors
III 1–5 Thin 3–30 Free nerve endings of touch and pressure
Nociceptors of lateral spinothalamic tract
Cold thermoreceptors
IV C 0.2–1.5 No 0.5–2.0 Nociceptors of anterior spinothalamic tract
Warmth receptors

Autonomic[edit]

The autonomic nervous system has two kinds of peripheral fibers:

Fiber types

Type Erlanger-Gasser
Classification
Diameter
(µm)
Myelin[48] Conduction
velocity (m/s)
preganglionic fibers B 1–5 Yes 3–15
postganglionic fibers C 0.2–1.5 No 0.5–2.0

Clinical significance[edit]

In order of degree of severity, injury to a nerve can be described as neurapraxia, axonotmesis, or neurotmesis.
Concussion is considered a mild form of diffuse axonal injury.[49] Axonal injury can also cause central chromatolysis. The dysfunction of axons in the nervous system is one of the major causes of many inherited neurological disorders that affect both peripheral and central neurons.[5]

When an axon is crushed, an active process of axonal degeneration takes place at the part of the axon furthest from the cell body. This degeneration takes place quickly following the injury, with the part of the axon being sealed off at the membranes and broken down by macrophages. This is known as Wallerian degeneration.[50] Dying back of an axon can also take place in many neurodegenerative diseases, particularly when axonal transport is impaired, this is known as Wallerian-like degeneration.[51] Studies suggest that the degeneration happens as
a result of the axonal protein NMNAT2, being prevented from reaching all of the axon.[52]

Demyelination of axons causes the multitude of neurological symptoms found in the disease multiple sclerosis.

Dysmyelination is the abnormal formation of the myelin sheath. This is implicated in several leukodystrophies, and also in schizophrenia.[53][54][55]

A severe traumatic brain injury can result in widespread lesions to nerve tracts damaging the axons in a condition known as diffuse axonal injury. This can lead to a persistent vegetative state.[56] It has been shown in studies on the rat that axonal damage from a single mild traumatic brain injury, can leave a susceptibility to further damage, after repeated mild traumatic brain injuries.[57]

A nerve guidance conduit is an artificial means of guiding axon growth to enable neuroregeneration, and is one of the many treatments used for different kinds of nerve injury.

History[edit]

German anatomist Otto Friedrich Karl Deiters is generally credited with the discovery of the axon by distinguishing it from the dendrites.[5] Swiss Rüdolf Albert von Kölliker and German Robert Remak were the first to identify and characterize the axon initial segment. Kölliker named the axon in 1896.[58] Louis-Antoine Ranvier was the first to describe the gaps or nodes found on axons and for this contribution these axonal features are now commonly referred to as the nodes of Ranvier. Santiago Ramón y Cajal, a Spanish anatomist, proposed that axons were the output components of neurons, describing their functionality.[5] Joseph Erlanger and Herbert Gasser earlier developed the classification system for peripheral nerve fibers,[59] based on axonal conduction velocity, myelination, fiber size etc. Alan Hodgkin and Andrew Huxley also employed the squid giant axon (1939) and by 1952 they had obtained a full quantitative description of the ionic basis of the action potential, leading to the formulation of the Hodgkin–Huxley model. Hodgkin and Huxley were awarded jointly the Nobel Prize for this work in 1963. The formulae detailing axonal conductance were extended to vertebrates in the Frankenhaeuser–Huxley equations. The understanding of the biochemical basis for action potential propagation has advanced further, and includes many details about individual ion channels.

Other animals[edit]

The axons in invertebrates have been extensively studied. The longfin inshore squid, often used as a model organism has the longest known axon.[60] The giant squid has the largest axon known. Its size ranges from 0.5 (typically) to 1 mm in diameter and is used in the control of its jet propulsion system. The fastest recorded conduction speed of 210 m/s, is found in the ensheathed axons of some pelagic Penaeid shrimps[61] and the usual range is between 90 and 200 meters/s[62] (cf 100–120 m/s for the fastest myelinated vertebrate axon.)

In other cases as seen in rat studies an axon originates from a dendrite; such axons are said to have «dendritic origin». Some axons with dendritic origin similarly have a «proximal» initial segment that starts directly at the axon origin, while others have a «distal» initial segment, discernibly separated from the axon origin.[63] In many species some of the neurons have axons that emanate from the dendrite and not from the cell body, and these are known as axon-carrying dendrites.[1] In many cases, an axon originates at an axon hillock on the soma; such axons are said to have «somatic origin». Some axons with somatic origin have a «proximal» initial segment adjacent the axon hillock, while others have a «distal» initial segment, separated from the soma by an extended axon hillock.[63]

See also[edit]

  • Electrophysiology
  • Ganglionic eminence
  • Giant axonal neuropathy
  • Neuronal tracing
  • Pioneer axon

References[edit]

  1. ^ a b Triarhou LC (2014). «Axons emanating from dendrites: phylogenetic repercussions with Cajalian hues». Frontiers in Neuroanatomy. 8: 133. doi:10.3389/fnana.2014.00133. PMC 4235383. PMID 25477788.
  2. ^ Yau KW (December 1976). «Receptive fields, geometry and conduction block of sensory neurones in the central nervous system of the leech». The Journal of Physiology. 263 (3): 513–38. doi:10.1113/jphysiol.1976.sp011643. PMC 1307715. PMID 1018277.
  3. ^ a b c Squire, Larry (2013). Fundamental neuroscience (4th ed.). Amsterdam: Elsevier/Academic Press. pp. 61–65. ISBN 978-0-12-385-870-2.
  4. ^ a b c Luders E, Thompson PM, Toga AW (August 2010). «The development of the corpus callosum in the healthy human brain». The Journal of Neuroscience. 30 (33): 10985–90. doi:10.1523/JNEUROSCI.5122-09.2010. PMC 3197828. PMID 20720105.
  5. ^ a b c d e Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G (April 2011). «Axon physiology» (PDF). Physiological Reviews. 91 (2): 555–602. doi:10.1152/physrev.00048.2009. PMID 21527732. S2CID 13916255.
  6. ^ Nelson AD, Jenkins PM (2017). «Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier». Frontiers in Cellular Neuroscience. 11: 136. doi:10.3389/fncel.2017.00136. PMC 5422562. PMID 28536506.
  7. ^ Leterrier C, Clerc N, Rueda-Boroni F, Montersino A, Dargent B, Castets F (2017). «Ankyrin G Membrane Partners Drive the Establishment and Maintenance of the Axon Initial Segment». Frontiers in Cellular Neuroscience. 11: 6. doi:10.3389/fncel.2017.00006. PMC 5266712. PMID 28184187.
  8. ^ Leterrier C (February 2018). «The Axon Initial Segment: An Updated Viewpoint». The Journal of Neuroscience. 38 (9): 2135–2145. doi:10.1523/jneurosci.1922-17.2018. PMC 6596274. PMID 29378864.
  9. ^ Rasband MN (August 2010). «The axon initial segment and the maintenance of neuronal polarity». Nature Reviews. Neuroscience. 11 (8): 552–62. doi:10.1038/nrn2852. PMID 20631711. S2CID 23996233.
  10. ^ a b c d Jones SL, Svitkina TM (2016). «Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity». Neural Plasticity. 2016: 6808293. doi:10.1155/2016/6808293. PMC 4967436. PMID 27493806.
  11. ^ Clark BD, Goldberg EM, Rudy B (December 2009). «Electrogenic tuning of the axon initial segment». The Neuroscientist. 15 (6): 651–68. doi:10.1177/1073858409341973. PMC 2951114. PMID 20007821.
  12. ^ a b Yamada R, Kuba H (2016). «Structural and Functional Plasticity at the Axon Initial Segment». Frontiers in Cellular Neuroscience. 10: 250. doi:10.3389/fncel.2016.00250. PMC 5078684. PMID 27826229.
  13. ^ a b Susuki K, Kuba H (March 2016). «Activity-dependent regulation of excitable axonal domains». The Journal of Physiological Sciences. 66 (2): 99–104. doi:10.1007/s12576-015-0413-4. PMID 26464228. S2CID 18862030.
  14. ^ a b c d e Alberts B (2004). Essential cell biology: an introduction to the molecular biology of the cell (2nd ed.). New York: Garland. pp. 584–587. ISBN 978-0-8153-3481-1.
  15. ^ a b Alberts B (2002). Molecular biology of the cell (4th ed.). New York: Garland. pp. 979–981. ISBN 978-0-8153-4072-0.
  16. ^ Ozgen, H; Baron, W; Hoekstra, D; Kahya, N (September 2016). «Oligodendroglial membrane dynamics in relation to myelin biogenesis». Cellular and Molecular Life Sciences. 73 (17): 3291–310. doi:10.1007/s00018-016-2228-8. PMC 4967101. PMID 27141942.
  17. ^ Sadler, T. (2010). Langman’s medical embryology (11th ed.). Philadelphia: Lippincott William & Wilkins. p. 300. ISBN 978-0-7817-9069-7.
  18. ^ Hess A, Young JZ (November 1952). «The nodes of Ranvier». Proceedings of the Royal Society of London. Series B, Biological Sciences. Series B. 140 (900): 301–20. Bibcode:1952RSPSB.140..301H. doi:10.1098/rspb.1952.0063. JSTOR 82721. PMID 13003931. S2CID 11963512.
  19. ^ Robbins AA, Fox SE, Holmes GL, Scott RC, Barry JM (November 2013). «Short duration waveforms recorded extracellularly from freely moving rats are representative of axonal activity». Frontiers in Neural Circuits. 7 (181): 181. doi:10.3389/fncir.2013.00181. PMC 3831546. PMID 24348338.
  20. ^ Rongjing Ge, Hao Qian and Jin-Hui Wang* (2011) Molecular Brain 4(19), 1~11
  21. ^ Rongjing Ge, Hao Qian, Na Chen and Jin-Hui Wang* (2014) Molecular Brain 7(26):1-16
  22. ^ Chen N, Yu J, Qian H, Ge R, Wang JH (July 2010). «Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons». PLOS ONE. 5 (7): e11868. Bibcode:2010PLoSO…511868C. doi:10.1371/journal.pone.0011868. PMC 2912328. PMID 20686619.
  23. ^ Wolpert, Lewis (2015). Principles of development (5th ed.). pp. 520–524. ISBN 978-0-19-967814-3.
  24. ^ Fletcher TL, Banker GA (December 1989). «The establishment of polarity by hippocampal neurons: the relationship between the stage of a cell’s development in situ and its subsequent development in culture». Developmental Biology. 136 (2): 446–54. doi:10.1016/0012-1606(89)90269-8. PMID 2583372.
  25. ^ Jiang H, Rao Y (May 2005). «Axon formation: fate versus growth». Nature Neuroscience. 8 (5): 544–6. doi:10.1038/nn0505-544. PMID 15856056. S2CID 27728967.
  26. ^ Goslin K, Banker G (April 1989). «Experimental observations on the development of polarity by hippocampal neurons in culture». The Journal of Cell Biology. 108 (4): 1507–16. doi:10.1083/jcb.108.4.1507. PMC 2115496. PMID 2925793.
  27. ^ Lamoureux P, Ruthel G, Buxbaum RE, Heidemann SR (November 2002). «Mechanical tension can specify axonal fate in hippocampal neurons». The Journal of Cell Biology. 159 (3): 499–508. doi:10.1083/jcb.200207174. PMC 2173080. PMID 12417580.
  28. ^ a b Arimura N, Kaibuchi K (March 2007). «Neuronal polarity: from extracellular signals to intracellular mechanisms». Nature Reviews. Neuroscience. 8 (3): 194–205. doi:10.1038/nrn2056. PMID 17311006. S2CID 15556921.
  29. ^ Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans
  30. ^ Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M (August 1994). «The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6». Cell. 78 (3): 409–24. doi:10.1016/0092-8674(94)90420-0. PMID 8062384. S2CID 22666205.
  31. ^ Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E (June 1999). «A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion». Cell. 97 (7): 927–41. doi:10.1016/S0092-8674(00)80804-1. PMID 10399920. S2CID 18043414.
  32. ^ Hedgecock EM, Culotti JG, Hall DH (January 1990). «The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans». Neuron. 4 (1): 61–85. doi:10.1016/0896-6273(90)90444-K. PMID 2310575. S2CID 23974242.
  33. ^ Huang EJ, Reichardt LF (2003). «Trk receptors: roles in neuronal signal transduction». Annual Review of Biochemistry. 72: 609–42. doi:10.1146/annurev.biochem.72.121801.161629. PMID 12676795. S2CID 10217268.
  34. ^ a b Da Silva JS, Hasegawa T, Miyagi T, Dotti CG, Abad-Rodriguez J (May 2005). «Asymmetric membrane ganglioside sialidase activity specifies axonal fate». Nature Neuroscience. 8 (5): 606–15. doi:10.1038/nn1442. PMID 15834419. S2CID 25227765.
  35. ^ Bradke F, Dotti CG (March 1999). «The role of local actin instability in axon formation». Science. 283 (5409): 1931–4. Bibcode:1999Sci…283.1931B. doi:10.1126/science.283.5409.1931. PMID 10082468.
  36. ^ Furley AJ, Morton SB, Manalo D, Karagogeos D, Dodd J, Jessell TM (April 1990). «The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity». Cell. 61 (1): 157–70. doi:10.1016/0092-8674(90)90223-2. PMID 2317872. S2CID 28813676.
  37. ^ Alberts, Bruce (2015). Molecular biology of the cell (Sixth ed.). p. 947. ISBN 9780815344643.
  38. ^ Kunik D, Dion C, Ozaki T, Levin LA, Costantino S (2011). «Laser-based single-axon transection for high-content axon injury and regeneration studies». PLOS ONE. 6 (11): e26832. Bibcode:2011PLoSO…626832K. doi:10.1371/journal.pone.0026832. PMC 3206876. PMID 22073205.
  39. ^ Schwab ME (February 2004). «Nogo and axon regeneration». Current Opinion in Neurobiology. 14 (1): 118–24. doi:10.1016/j.conb.2004.01.004. PMID 15018947. S2CID 9672315.
  40. ^ Gensel JC, Nakamura S, Guan Z, van Rooijen N, Ankeny DP, Popovich PG (March 2009). «Macrophages promote axon regeneration with concurrent neurotoxicity». The Journal of Neuroscience. 29 (12): 3956–68. doi:10.1523/JNEUROSCI.3992-08.2009. PMC 2693768. PMID 19321792.
  41. ^ Myers KA, Baas PW (September 2007). «Kinesin-5 regulates the growth of the axon by acting as a brake on its microtubule array». The Journal of Cell Biology. 178 (6): 1081–91. doi:10.1083/jcb.200702074. PMC 2064629. PMID 17846176.
  42. ^ Rishal I, Kam N, Perry RB, Shinder V, Fisher EM, Schiavo G, Fainzilber M (June 2012). «A motor-driven mechanism for cell-length sensing». Cell Reports. 1 (6): 608–16. doi:10.1016/j.celrep.2012.05.013. PMC 3389498. PMID 22773964.
  43. ^ Karamched BR, Bressloff PC (May 2015). «Delayed feedback model of axonal length sensing». Biophysical Journal. 108 (9): 2408–19. Bibcode:2015BpJ…108.2408K. doi:10.1016/j.bpj.2015.03.055. PMC 4423051. PMID 25954897.
  44. ^ Bressloff PC, Karamched BR (2015). «A frequency-dependent decoding mechanism for axonal length sensing». Frontiers in Cellular Neuroscience. 9: 281. doi:10.3389/fncel.2015.00281. PMC 4508512. PMID 26257607.
  45. ^ Folz F, Wettmann L, Morigi G, Kruse K (May 2019). «Sound of an axon’s growth». Physical Review E. 99 (5–1): 050401. arXiv:1807.04799. Bibcode:2019PhRvE..99e0401F. doi:10.1103/PhysRevE.99.050401. PMID 31212501. S2CID 118682719.
  46. ^ Andrew BL, Part NJ (April 1972). «Properties of fast and slow motor units in hind limb and tail muscles of the rat». Quarterly Journal of Experimental Physiology and Cognate Medical Sciences. 57 (2): 213–25. doi:10.1113/expphysiol.1972.sp002151. PMID 4482075.
  47. ^ Russell NJ (January 1980). «Axonal conduction velocity changes following muscle tenotomy or deafferentation during development in the rat». The Journal of Physiology. 298: 347–60. doi:10.1113/jphysiol.1980.sp013085. PMC 1279120. PMID 7359413.
  48. ^ Pocock G, Richards CD, et al. (2004). Human Physiology (2nd ed.). New York: Oxford University Press. pp. 187–189. ISBN 978-0-19-858527-5.
  49. ^ Dawodu ST (16 August 2017). «Traumatic Brain Injury (TBI) — Definition, Epidemiology, Pathophysiology». Medscape. Archived from the original on 12 June 2018. Retrieved 14 July 2018.
  50. ^ Trauma and Wallerian Degeneration Archived 2 May 2006 at the Wayback Machine, University of California, San Francisco
  51. ^ Coleman MP, Freeman MR (1 June 2010). «Wallerian degeneration, wld(s), and nmnat». Annual Review of Neuroscience. 33 (1): 245–67. doi:10.1146/annurev-neuro-060909-153248. PMC 5223592. PMID 20345246.
  52. ^ Gilley J, Coleman MP (January 2010). «Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons». PLOS Biology. 8 (1): e1000300. doi:10.1371/journal.pbio.1000300. PMC 2811159. PMID 20126265.
  53. ^ Krämer-Albers EM, Gehrig-Burger K, Thiele C, Trotter J, Nave KA (November 2006). «Perturbed interactions of mutant proteolipid protein/DM20 with cholesterol and lipid rafts in oligodendroglia: implications for dysmyelination in spastic paraplegia». The Journal of Neuroscience. 26 (45): 11743–52. doi:10.1523/JNEUROSCI.3581-06.2006. PMC 6674790. PMID 17093095.
  54. ^ Matalon R, Michals-Matalon K, Surendran S, Tyring SK (2006). «Canavan disease: studies on the knockout mouse». N-Acetylaspartate. Adv. Exp. Med. Biol. Advances in Experimental Medicine and Biology. Vol. 576. pp. 77–93, discussion 361–3. doi:10.1007/0-387-30172-0_6. ISBN 978-0-387-30171-6. PMID 16802706. S2CID 44405442.
  55. ^ Tkachev D, Mimmack ML, Huffaker SJ, Ryan M, Bahn S (August 2007). «Further evidence for altered myelin biosynthesis and glutamatergic dysfunction in schizophrenia». The International Journal of Neuropsychopharmacology. 10 (4): 557–63. doi:10.1017/S1461145706007334. PMID 17291371.
  56. ^ «Brain Injury, Traumatic». Medcyclopaedia. GE. Archived from the original on 26 May 2011. Retrieved 20 June 2018.
  57. ^ Wright DK, Brady RD, Kamnaksh A, Trezise J, Sun M, McDonald SJ, et al. (October 2019). «Repeated mild traumatic brain injuries induce persistent changes in plasma protein and magnetic resonance imaging biomarkers in the rat». Scientific Reports. 9 (1): 14626. Bibcode:2019NatSR…914626W. doi:10.1038/s41598-019-51267-w. PMC 6787341. PMID 31602002.
  58. ^ Finger S (1994). Origins of neuroscience: a history of explorations into brain function. Oxford University Press. p. 47. ISBN 9780195146943. OCLC 27151391. Kölliker would give the «axon» its name in 1896.
  59. ^ Grant G (December 2006). «The 1932 and 1944 Nobel Prizes in physiology or medicine: rewards for ground-breaking studies in neurophysiology». Journal of the History of the Neurosciences. 15 (4): 341–57. doi:10.1080/09647040600638981. PMID 16997762. S2CID 37676544.
  60. ^ Hellier, Jennifer L. (16 December 2014). The Brain, the Nervous System, and Their Diseases [3 volumes]. ABC-CLIO. ISBN 9781610693387. Archived from the original on 14 March 2018.
  61. ^ Hsu K, Terakawa S (July 1996). «Fenestration in the myelin sheath of nerve fibers of the shrimp: a novel node of excitation for saltatory conduction». Journal of Neurobiology. 30 (3): 397–409. doi:10.1002/(SICI)1097-4695(199607)30:3<397::AID-NEU8>3.0.CO;2-#. PMID 8807532.
  62. ^ Salzer JL, Zalc B (October 2016). «Myelination». Current Biology. 26 (20): R971–R975. doi:10.1016/j.cub.2016.07.074. PMID 27780071.
  63. ^ a b Höfflin F, Jack A, Riedel C, Mack-Bucher J, Roos J, Corcelli C, et al. (2017). «Heterogeneity of the Axon Initial Segment in Interneurons and Pyramidal Cells of Rodent Visual Cortex». Frontiers in Cellular Neuroscience. 11: 332. doi:10.3389/fncel.2017.00332. PMC 5684645. PMID 29170630.

External links[edit]

  • Histology image: 3_09 at the University of Oklahoma Health Sciences Center – «Slide 3 Spinal cord»

Аксон
(греч. ἀξον — ось) — нейрит, осевой
цилиндр, отросток нервной клетки, по
которому нервные импульсы идут от тела
клетки (сомы) к иннервируемым органам
и другим нервным клеткам.

Нейрон
состоит из одного аксона, тела и нескольких
дендритов, в зависимости от числа которых
нервные клетки делятся на униполярные,
биполярные, мультиполярные. Передача
нервного импульса происходит от дендритов
(или от тела клетки) к аксону, а затем
сгенерированный потенциал действия от
начального сегмента аксона передается
назад к дендритам [1]. Если аксон в нервной
ткани соединяется с телом следующей
нервной клетки, такой контакт называется
аксо-соматическим, с дендритами —
аксо-дендритический, с другим аксоном
— аксо-аксональный (редкий тип соединения,
встречается в ЦНС).

В
месте соединения аксона с телом нейрона
у наиболее крупных пирамидных клеток
5-ого слоя коры находится аксонный
холмик. Ранее предполагалось, что здесь
происходит преобразование постсинаптического
потенциала нейрона в нервные импульсы,
но экспериментальные данные это не
подтвердили. Регистрация электрических
потенциалов выявила, что нервный импульс
генерируется в самом аксоне, а именно
в начальном сегменте на расстоянии ~50
мкм от тела нейрона [2]. Для генерации
потенциала действия в начальном сегменте
аксона требуется повышенная концентрация
натриевых каналов (до ста раз по сравнению
с телом нейрона[3]).

Питание
и рост аксона зависят от тела нейрона:
при перерезке аксона его периферическая
часть отмирает, а центральная сохраняет
жизнеспособность. При диаметре в
несколько микронов длина аксона может
достигать у крупных животных 1 метра и
более (например, аксоны, идущие от
нейронов спинного мозга в конечности).
У многих животных (кальмаров, рыб,
кольчатых червей, форонид, ракообразных)
встречаются гигантские аксоны толщиной
в сотни мкм (у кальмаров — до 2—3 мм).
Обычно такие аксоны отвечают за проведение
сигналов к мышцам. обеспечивающим
«реакцию бегства» (втягивание в норку,
быстрое плавание и др.). При прочих равных
условиях с увеличением диаметра аксона
увеличивается скорость проведения по
нему нервных импульсов.

В
протоплазме аксона — аксоплазме —
имеются тончайшие волоконца —
нейрофибриллы, а также микротрубочки,
митохондрии и агранулярная (гладкая)
эндоплазматическая сеть. В зависимости
от того, покрыты ли аксоны миелиновой
(мякотной) оболочкой или лишены её, они
образуют мякотные или безмякотные
нервные волокна.

Миелиновая
оболочка аксонов имеется только у
позвоночных. Её образуют «накручивающиеся»
на аксон специальные шванновские клетки,
между которыми остаются свободные от
миелиновой оболочки участки — перехваты
Ранвье. Только на перехватах присутствуют
потенциал-зависимые натриевые каналы
и заново возникает потенциал действия.
При этом нервный импульс распространяется
по миелинизированным волокнам ступенчато,
что в несколько раз повышает скорость
его распространения.

Концевые
участки аксона — терминали — ветвятся
и контактируют с другими нервными,
мышечными или железистыми клетками. На
конце аксона находится синаптическое
окончание — концевой участок терминали,
контактирующий с клеткой-мишенью. Вместе
с постсинаптической мембраной
клетки-мишени синаптическое окончание
образует синапс. Через синапсы передаётся
возбуждение.

Аксо́нный
тра́нспорт
— это перемещение по аксону нервной
клетки различного биологического
материала.

Аксональные
отростки нейронов отвечают за передачу
потенциала действия от тела нейрона к
синапсу. Также аксон представляет собой
путь, по которому осуществляется
транспорт необходимых биологических
материалов между телом нейрона и
синапсом, необходимый для функционирования
нервной клетки. По аксону из области
синтеза в теле нейрона транспортируются
мембранные органеллы (митохондрии),
различные везикулы, сигнальные молекулы,
ростовые факторы, белковые комплексы,
компоненты цитоскелета и даже Na+- и
K+-каналы. Конечными пунктами этого
транспорта служат определенные области
аксона и синаптической бляшки. В свою
очередь, нейротрофические сигналы
транспортируются из области синапса к
телу клетки. Это выполняет роль обратной
связи, сообщающей о состоянии иннервации
мишени.Длина аксона периферической
нервной системы человека может превышать
1 м, а может быть и больше у крупных
животных. Толщина большого мотонейрона
человека составляет 15 мкм, что при длине
в 1 м дает объём ~0,2 мм³, а это почти в
10000 раз больше объёма клетки печени. Это
делает нейроны зависимыми от эффективного
и координированного физического
транспорта веществ и органелл по аксонам.

Величины
длин и диаметров аксонов, а также
количества материала, транспортируемого
по ним, безусловно, говорят о возможности
возникновения сбоев и ошибок в системе
транспорта. Многие нейродегенеративные
заболевания непосредственно связаны
с нарушениями в работе этой системы.

Упрощённо
аксонный транспорт можно представить
как систему, состоящую из нескольких
элементов. В неё входят груз, белки-моторы,
осуществляющие транспорт, филаменты
цитоскелета, или «рельсы», вдоль которых
«моторы» способны передвигаться. Также
необходимы белки-линкеры, связывающие
белки-моторы с их грузом или другими
клеточными структурами, и вспомогательные
молекулы, запускающие и регулирующие
транспорт.

Белки
цитоскелета доставляются из тела клетки,
двигаясь по аксону со скоростью от 1 до
5 мм в сутки. Это медленный аксонный
транспорт (похожий на него транспорт
имеется и в дендритах). Многие ферменты
и другие белки цитозоля также переносятся
при помощи этого типа транспорта.Нецитозольные
материалы, которые необходимы в синапсе,
такие как секретируемые белки и
мембраносвязанные молекулы, двигаются
по аксону с гораздо большей скоростью.
Эти вещества переносятся из места их
синтеза, эндоплазматического ретикулума,
к аппарату Гольджи, который часто
располагается у основания аксона. Затем
эти молекулы, упакованные в мембранные
пузырьки, переносятся вдоль
рельсов-микротрубочек путем быстрого
аксонного транспорта со скоростью до
400 мм в сутки. Таким образом по аксону
транспортируются митохондрии, различные
белки, включая нейропептиды (нейромедиаторы
пептидной природы), непептидные
нейромедиаторы.Транспорт материалов
от тела нейрона к синапсу называется
антероградным, а в обратном направлении
— ретроградным.Транспорт по аксону на
большие расстояния происходит с участием
микротрубочек. Микротрубочки в аксоне
обладают присущей им полярностью и
ориентированны быстрорастущим
(плюс-)концом к синапсу, а медленнорастущим
(минус-) — к телу нейрона. Белки-моторы
аксонного транспорта принадлежат к
кинезиновому и динеиновому
суперсемействам.Кинезины являются, в
основном, плюс-концевыми моторными
белка́ми, транспортирующими такие
грузы, как предшественники синаптических
везикул и мембранные органеллы. Этот
транспорт идет в направлению к синапсу
(антероградно). Цитоплазматические
динеины — это минус-концевые моторные
белки, транспортирующие нейротрофные
сигналы, эндосомы и другие грузы
ретроградно к телу нейрона. Ретроградный
транспорт осуществляется динеинами не
эксклюзивно: обнаружены несколько
кинезинов, перемещающихся в ретроградном
направлении.

11.Миелинизированные
и немиелинизированные волокна. Процесс
миелинизации
.
Бол-во нервов содержит миелинизированные
и немиелинизированные или слабо
миелинизированные волокна. Клеточный
состав эндоневральных пространств
отражает уровень миелинизации. В норме
90% обнаруживаемых в этом пространстве
клеточных ядер относится к клеткам
Шванна (леммоцитам), а остальные
принадлежат фибробластам и капилярному
эндотелию. При 80% шванновских клеток
окружают немиелинизированных аксоны;
рядом с миелинизированными волокнами
их количество уменьшено в 4 раза.
Миелинизированные волокна большого
диаметра проводят импульсы в значительно
более быстром темпе, чем слабо
миелинизированные или немиелинизированные.
Выделяют три класса волокон: А, В и С.
А-волокна – соматические афферентные
и афферентные миелинизированные нервные
волокна, В-волокна – миелинизированные
преганглионарные вегетативные волокна,
С-волокна – немиелинизированные
вегетативные и сенсорные волокна. Миелин
покрывает оболочку нервных стволов и
обеспечивает более эффективную передачу
нервного импульса. Процесс называется
миелинизацией, так как в результате
образуется чехол из вещества миелина,
примерно на 2/3 состоящего из жира и
являющегося хорошим электрическим
изолятором. Исследователи придают очень
большое значение процессу миелинизации
в развитии мозга. Известно, что у
новорожденного ребенка миелинизировано
примерно 2/3 волокон головного мозга.
Примерно к 12 годам завершается следующий
этап миелинизации. Это соответствует
тому, что у ребенка уже формируется
функция внимания, он достаточно хорошо
владеет собой. Вместе с тем полностью
процесс миелинизации заканчивается
только при завершении полового созревания.
Таким образом, процесс миелинизации
является показателем созревания ряда
психических функций. Оказывается,
миелинизированные волокна в сотни раз
быстрее проводят возбуждение, чем
немиелинизированные, т. е. нейронные
сети нашего мозга могут работать с
большей скоростью, а значит, более
эффективно.

12.
Межнейрональные связи. Синапсы, их
строение и функции.

На более поздних
стадиях филогенеза и прежде всего у
человека связь между нервными клетками
осуществляется специальными образованиями
— синапсами. Синапс состоит из трех
основных элементов: пресинаптической
мембраны, синаптической щели и
постсинаптической мембраны. Пресинаптическая
мембрана представляет собой нейросекреторный
аппарат, в котором синтезируется и
выделяется медиатор, оказывающий
тормозящее или возбуждающее действие
на постсинаптическую мембрану
иннервируемой клетки. Постсинаптическая
мембрана обладает избирательной
чувствительность к химическому агенту
— медиатору и практически нечувствительна
к раздражителю электрическим током.
Наличие синапсов определяет одностороннее
проведение нервного импульса (обратная
передача возбуждения с постсинаптнческой
на пресинаптическую мембрану невозможна),
поскольку в нервных волокнах возбуждение
может распространяться в обе стороны
от стимула. Вместе с тем в синапсе
замедляется скорость проведения.
Длительность синаптической задержки
варьирует в значительных пределах в
зависимости от функционального назначения
синапса и составляет 0,2 — 0,5 мс в
межнейрональных и нервно- мышечных
синапсах, тогда как в нервных окончаниях
гладкой мускулатуры достигает 5 — 10 мс.

13.
Типы синапсов (химические и электрические).
Механизм синаптической передачи
.
Медиатор, находящийся в пузырьках,
выделяется в синаптическую щель с
помощью экзоцитоза (пузырьки подходят
к мембране, сливаются с ней и разрываются,
выпуская медиатор). Его выделение
происходит небольшими порциями –
квантами. Каждый квант содержит от 1.000
до 10.000 молекул нейромедиатора. Небольшое
количество квантов выходит из окончания
и в состоянии покоя. Когда нервный
импульс, т.е. ПД, достигает пресинаптического
окончания, происходит деполяризация
его пресинаптической мембраны. Открываются
ее кальциевые каналы и ионы кальция
входят в синаптическую бляшку. Начинается
выделение большого количества квантов
нейромедиатора. Молекулы медиатора
диффундируют через синаптическую щель
к постсинаптической мембране и
взаимодействуют с ее хеморецепторами.
В результате образования комплексов
медиатор-рецептор, в субсинаптической
мембране начинается синтез так называемых
вторичных посредников. В частности
цАМФ. Эти посредники активируют ионные
каналы постсинаптической мембраны.
Поэтому такие каналы называют
хемозависимыми или рецепторуправляемыми.
Т.е. они открываются при действии ФАВ
на хеморецепторы. В результате открывания
каналов изменяется потенциал
субсинаптической мембраны. Такое
изменение называется постсинаптическим
потенциалом. Электрические
синапсы.
представляет
собой щелевидное образование (размеры
щели до 2 нм) с ионными мостиками-каналами
между двумя контактирующими клетками.
Петли тока, в частности при наличии
потенциала действия (ПД), почти
беспрепятственно перескакивают через
такой щелевидный контакт и возбуждают,
т.е. индуцируют генерацию ПД второй
клетки. В целом, такие синапсы (они
называются эфапсами) обеспечивают очень
быструю передачу возбуждения. Но в то
же время с помощью этих синапсов нельзя
обеспечить одностороннее проведение,
т. к. большая часть таких синапсов
обладает двусторонней проводимостью.
Кроме того, с их помощью нельзя заставить
эффекторную клетку (клетку, которая
управляется через данный синапс)
тормозить свою активность. Аналогом
электрического синапса в гладких мышцах
и в сердечной мышце являются щелевые
контакты типа нексуса. Химические
синапсы.

По строению химические синапсы
представляют собой окончания аксона
(терминальные синапсы) или его варикозную
часть (проходящие синапсы), которая
заполнена химическим веществом —
медиатором. В синапсе различают
пресинаптический элемент, который
ограничен пресинаптической мембраной,
постсинаптический элемент, который
ограничен постсипаптической мембраной,
а также внесинаптическую область и
синаптическую щель, величина которой
составляет в среднем 50 нм. В литературе
существует большое разнообразие в
названиях синапсов. Например, синаптическая
бляшка — это синапс между нейронами,
концевая пластинка — это постсинаптическая
мембрана мионеврального синапса,
моторная бляшка — это пресинаптичсское
окончание аксона на мышечном волокне.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Аксон

  • Аксон (др.-греч. ἄξων «ось») — это нейрит (длинный цилиндрический отросток нервной клетки), по которому нервные импульсы идут от тела клетки (сомы) к иннервируемым органам и другим нервным клеткам.

    Каждый нейрон состоит из одного аксона, тела (перикариона) и нескольких дендритов, в зависимости от числа которых нервные клетки делятся на униполярные, биполярные или мультиполярные. Передача нервного импульса происходит от дендритов (или от тела клетки) к аксону, а затем сгенерированный потенциал действия от начального сегмента аксона передаётся назад к дендритам. Если аксон в нервной ткани соединяется с телом следующей нервной клетки, такой контакт называется аксо-соматическим, с дендритами — аксо-дендритический, с другим аксоном — аксо-аксональный (редкий тип соединения, встречается в ЦНС).

    Концевые участки аксона — терминали — ветвятся и контактируют с другими нервными, мышечными или железистыми клетками. На конце аксона находится синаптическое окончание — концевой участок терминали, контактирующий с клеткой-мишенью. Вместе с постсинаптической мембраной клетки-мишени синаптическое окончание образует синапс. Через синапсы передаётся возбуждение.

Источник: Википедия

Связанные понятия

Си́напс (греч. σύναψις, от συνάπτειν — соединение, связь) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём, посредством прохождения ионов из одной клетки в другую.

Нейро́н, или невро́н (от др.-греч. νεῦρον — волокно, нерв) — структурно-функциональная единица нервной системы. Нейрон — электрически возбудимая клетка, которая обрабатывает, хранит и передает информацию с помощью электрических и химических сигналов. Нейрон имеет сложное строение и узкую специализацию. Клетка содержит ядро, тело клетки и отростки (дендриты и аксоны). В головном мозге человека насчитывается около 90—95 миллиардов нейронов. Нейроны могут соединяться один с другим, формируя биологические…

Дендрит (от греч. δένδρον (dendron) — дерево) — разветвлённый отросток нейрона, который получает информацию через химические (или электрические) синапсы от аксонов (или дендритов и сомы) других нейронов и передаёт её через электрический сигнал телу нейрона (перикариону), из которого вырастает. Термин «дендрит» ввёл в научный оборот швейцарский ученый В. Гис в 1889 году.

Миелин (в некоторых изданиях употребляется некорректная теперь форма миэлин) — вещество, образующее миелиновую оболочку нервных волокон.

Вставочный нейрон (синонимы: интернейрон, промежуточный нейрон; англ. interneuron, relay neuron, association neuron, bipolar neuron) — нейрон, связанный только с другими нейронами, в отличие от двигательных нейронов, иннервирующих мышечные волокна, и сенсорных нейронов, преобразующих стимулы из внешней среды в электрические сигналы.

Упоминания в литературе

Аксон — длинное нервное волокно, отходящее от тела некоторых нейронов и заканчивающееся терминалями (до нескольких сотен) на клетках-мишенях: нейронах, миоцитах, клетках железы и др. В зависимости от наличия или отсутствия аксона выделяют нейроны I и II типа. Область тела нейрона, которой начинается аксон, называют начальным сегментом аксон, или аксонным холмиком. Мембрана аксонного холмика генерирует потенциалы действия (нервные импульсы), распространяющиеся по аксону. Некоторые аксоны покрыты прерывистыми цепочками миелиновых оболочек (муфт) и называются миелинизированными (волокна спинномозговых нервов). Аксоны, свободные от миелина, называются немиелинизированными (волокна вегетативных нервов). Между муфтами имеются промежутки – перехваты Ранвье. В участках, лишенных миелиновой оболочки, мембрана аксона контактирует непосредственно с внеклеточной средой. В ЦНС миелиновые муфты образованы глиальными клетками, олигодендритами. Миелиновые муфты аксонов, выходящих за пределы ЦНС (периферических волокон), образованы шванновскими клетками. Одна шванновская клетка может образовывать муфты, покрывая до девяти нервных волокон. Главная функция аксонов – передача нервных импульсов от тела нейрона к терминалям, которые заканчиваются на клетках-мишенях утолщениями, синаптическими бляшками. Скорость движения информации по аксонам составляет от нескольких миллиметров в секунду в мелких немиелинизированных волокнах до 90 м/с в крупных миелинизированных. Миелиновая оболочка увеличивает скорость передачи потенциалов действия по аксону.

НЕЙРО́Н, нервная клетка; основная структурная и функциональная единица нервной системы. Нейроны обладают особыми свойствами – возбудимостью и проводимостью. Из нейронов построена нервная ткань. Как и другие клетки, нейрон имеет ядро, цитоплазму и клеточную мембрану. Ядро содержится в теле нейрона (его расширенная часть), от которого отходят отростки – короткие (дендриты) и один длинный (аксон). Длина аксона может достигать 1 м и более. Аксоны образуют тяжки, которые называются нервами (наиболее крупные – нервными стволами). Дендриты принимают сигналы из внешней среды или от другой нервной клетки и проводят возбуждение к аксону, который передаёт его в удалённые от тела нейрона области. Тела нейронов образуют серое вещество головного и спинного мозга, а дендриты и аксоны – белое мозговое вещество.

Таким образом, основными функциями нейронов являются: восприятие внешних раздражений – рецепторная функция, их переработка – интегративная функция и передача нервных влияний на другие нейроны или различные рабочие органы – эффекторная функция. В теле нервной клетки, или соме, происходят основные процессы переработки информации. Многочисленные древовидно разветвленные отростки – дендриты (греч. дендрон – «дерево») служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток – аксон (греч. аксис – «ось»), который передает нервные импульсы дальше – другой нервной клетке или рабочему органу (мышце, железе). Особенно высокой возбудимостью обладает начальная часть аксона и расширение в месте его выхода из тела клетки – аксонный холмик нейрона. Именно в этом сегменте клетки возникает нервный импульс.

Таким образом, основными функциями нейронов являются: восприятие внешних раздражений – рецепторная функция, их переработка интегративная функция и передача нервных влияний на другие нейроны или различные рабочие органы – эффекторная функция. В теле нервной клетки, или соме, происходят основные процессы переработки информации. Многочисленные древовидно разветвленные отростки – дендриты (греч. дендрон – «дерево») служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток – аксон (греч. аксис – «ось»), который передает нервные импульсы дальше – другой нервной клетке или рабочему органу (мышце, железе). Особенно высокой возбудимостью обладает начальная часть аксона и расширение в месте его выхода из тела клетки – аксонный холмик нейрона. Именно в этом сегменте клетки возникает нервный импульс.

Нейрон. Основной функциональной и структурной единицей нервной системы является нейрон, строение которого показано на рис. 1.1. Нейрон состоит из клеточного тела, или сомы, коротких нервных отростков, называемых дендритами, и длинного нервного волокна – аксона. Область выхода аксона из клеточного тела нейрона называется аксонным холмиком. Хотя формально и дендриты и аксоны являются нервными волокнами, термин «нервное волокно» в основном употребляется при упоминании аксона. Дендриты передают нервный импульс к телу нейрона, тогда как аксон направляет импульс из тела нейрона на другие нервные клетки или на мышечные волокна.

Связанные понятия (продолжение)

Клетки Пуркинье (англ. Purkinje cells) — крупные нервные клетки коры мозжечка. Своё название клетки получили в честь их первооткрывателя, чешского врача и физиолога Яна Эвангелисты Пуркинье.

Пирамидальные нейроны, или пирамидные нейроны, — основные возбудительные нейроны мозга млекопитающих. Также обнаруживаются у рыб, птиц, рептилий. Напоминают по форме пирамиду, из которой вверх ведёт большой апикальный дендрит; имеют один аксон, идущий вниз, и множество базальных дендритов. Впервые были исследованы Рамон-и-Кахалем. Отмечены в таких структурах, как кора мозга, гиппокамп, миндалевидное тело (амигдала), но отсутствуют в обонятельной луковице, стриатуме, среднем мозге, ромбовидном мозге…

Подробнее: Пирамидальный нейрон

Нейроглия, или просто глия (от др.-греч. νεῦρον — волокно, нерв + γλία — клей), — совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Количество глиальных клеток в мозге примерно равно количеству нейронов. Термин ввёл в 1846 году Рудольф Вирхов.

Перикарион (др.-греч. περι- — приставка со значением «около, вокруг, кругом» + κάρυον — «орех») — сома (тело) нейрона, может иметь различную величину и форму. На цитолемме перикариона образуются многочисленные синаптические контакты с отростками других нейронов.

Нервная ткань — ткань эктодермального происхождения, представляет собой систему специализированных структур, образующих основу нервной системы и создающих условия для реализации её функций. Нервная ткань осуществляет восприятие и преобразование раздражителей в нервный импульс и передачу его к эффектору. Нервная ткань обеспечивает взаимодействие тканей, органов и систем организма и их регуляцию.

Мотонейро́н (от лат. motor — приводящий в движение и нейрон; двигательный нейро́н) — крупная нервная клетка в передних рогах спинного мозга. Мотонейроны обеспечивают моторную координацию и поддержание мышечного тонуса.

Шванновские клетки (леммоциты) — вспомогательные клетки нервной ткани, которые формируются вдоль аксонов периферических нервных волокон. Создают, а иногда и разрушают, электроизолирующую миелиновую оболочку нейронов. Выполняют опорную (поддерживают аксон) и трофическую (питают тело нейрона) функции. Описаны немецким физиологом Теодором Шванном в 1838 году и названы в его честь.

Астроцит (лат. astrocytus; от греч. astron — звезда; и kýtos, здесь — клетка) — тип нейроглиальной клетки звездчатой формы с многочисленными отростками. Совокупность астроцитов называется астроглией.

Гранулярные клетки — несколько разновидностей мелких нейронов мозга. Название «гранулярная клетка» («зернистая клетка», «клетка-зерно») используется анатомами для нескольких разных типов нейронов, единственной общей особенностью которых является крайне малый размер тел этих клеток.

Подробнее: Гранулярная клетка

Гипотала́мус (лат. hypothalamus, от греч. ὑπό — «под» и θάλαμος — «комната, камера, отсек, таламус») — небольшая область в промежуточном мозге, включающая в себя большое число групп клеток (свыше 30 ядер), которые регулируют нейроэндокринную деятельность мозга и гомеостаз организма. Гипоталамус связан нервными путями практически со всеми отделами центральной нервной системы, включая кору, гиппокамп, миндалину, мозжечок, ствол мозга и спинной мозг. Вместе с гипофизом гипоталамус образует гипоталамо-гипофизарную…

Не́рвные воло́кна — длинные отростки нейронов, покрытые глиальными оболочками. По нервным волокнам распространяются нервные импульсы, по каждому волокну изолированно, не заходя на другие.

Корзинчатые нейроны — тормозные ГАМК-эргические вставочные нейроны молекулярного слоя мозжечка. Длинные аксоны корзинчатых нейронов образуют корзиноподобные синапсы с телами клеток Пуркинье. Корзинчатые нейроны многополярны, их дендриты свободно ветвятся.

Подробнее: Корзинчатый нейрон

Тала́мус, иногда — зри́тельные бугры (лат. Thalamus; от др.-греч. θάλαμος — «камера, комната, отсек») — отдел головного мозга, представляющий собой большую массу серого вещества, расположенную в верхней части таламической области промежуточного мозга хордовых животных, в том числе и человека. Впервые описан древнеримским врачом и анатомом Галеном. Таламус — это парная структура, состоящая из двух половинок, симметричных относительно межполушарной плоскости. Таламус находится глубже структур большого…

Полоса́тое те́ло (лат. corpus striatum) — анатомическая структура конечного мозга, относящаяся к базальным ядрам полушарий головного мозга.

Гиппока́мп (от др.-греч. ἱππόκαμπος — морской конёк) — часть лимбической системы головного мозга (обонятельного мозга). Участвует в механизмах формирования эмоций, консолидации памяти (то есть перехода кратковременной памяти в долговременную). Генерирует тета-ритм при удержании внимания.

Латеральное коленчатое тело (наружное коленчатое тело, ЛКТ) — легко распознаваемая структура мозга, которая помещается на нижней латеральной стороне подушки таламуса в виде достаточно большого плоского бугорка. В ЛКТ приматов и человека морфологически определено шесть слоев: 1 и 2 — слои крупных клеток, 3-6 — слои мелких клеток. Слои 1, 4 и 6 получают афференты от контрлатерального (расположенного в противоположном по отношению к ЛКТ полушарии) глаза, а слои 2, 3 и 5 — от ипсилатерального (расположенного…

Зубчатая извилина (лат. gyrus dentatus) или зубчатая фасция гиппокампа (лат. fascia dentata hippocampi) — зазубренная извилина, расположенная в глубине борозды гиппокампа и переходящая в ленточную извилину. В некоторых классификациях она вместе с аммоновым рогом считается частью самого гиппокампа, однако большинство авторов относят её к гиппокамповой формации. В её структуре выделяют три слоя: полиморфный хилус, гранулярный слой и молекулярный слой, который непрерывно переходит в молекулярный слой…

Потенциа́л де́йствия — волна возбуждения, перемещающаяся по мембране живой клетки в виде кратковременного изменения мембранного потенциала на небольшом участке возбудимой клетки (нейрона или кардиомиоцита), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к внутренней поверхности мембраны, в то время, как в покое она заряжена положительно. Потенциал действия является физиологической основой нервного импульса.

Обонятельная луковица — часть обонятельного мозга, парное образование, состоящее из тел вторых нейронов биполярного типа обонятельного анализатора. Располагается во внутричерепной полости между лобной долей сверху и решётчатой пластинкой решётчатой кости снизу, через отверстие которой в неё поступают нервные волокна обонятельной области носа, а сзади продолжается в обонятельный тракт.

Реце́птор — объединение из терминалей (нервных окончаний) дендритов чувствительных нейронов, глии, специализированных образований межклеточного вещества и специализированных клеток других тканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражитель) в нервный импульс. В некоторых рецепторах (например, вкусовых и слуховых рецепторах человека) раздражитель непосредственно воспринимается специализированными клетками эпителиального происхождения или…

Ганглий (др.-греч. γάγγλιον — узел), или нервный узел — скопление нервных клеток, состоящее из тел, дендритов и аксонов нервных клеток и глиальных клеток. Обычно ганглий имеет также оболочку из соединительной ткани. Имеются у многих беспозвоночных и всех позвоночных животных. Часто соединяются между собой, образуя различные структуры (нервные сплетения, нервные цепочки и т. п.).

Голубое пятно (голубоватое место, голубоватое пятно, синее пятно/место, лат. locus coeruleus) — ядро, расположенное в стволе мозга на уровне моста (участок голубоватого цвета в верхнелатеральной части ромбовидной ямки ствола головного мозга кнаружи от верхней ямки), часть ретикулярной формации. Система его проекций очень широка — аксоны восходят к верхним слоям коры больших полушарий, гиппокампу, миндалине, перегородке, полосатому телу, коре мозжечка. Нисходящие проекции идут в спинной мозг к симпатическим…

Афферентация (от лат. afferens — «приносящий») — постоянный поток нервных импульсов, поступающих в центральную нервную систему от органов чувств, воспринимающих информацию как от внешних раздражителей (экстерорецепция), так и от внутренних органов (интерорецепция). Находится в прямой зависимости от количества и силы воздействующих раздражителей, а также от состояния — активности или пассивности — индивида.

Белое вещество (лат. substantia alba) — компонент центральной нервной системы позвоночных животных и человека, состоящий главным образом из пучков аксонов, покрытых миелином. Противопоставляется серому веществу мозга, состоящему из клеточных тел нейронов. Цветовая дифференциация белого и серого вещества нервной ткани обусловлена белым цветом миелина.

Нервно-мышечный синапс (также нейромышечный, либо мионевральный синапс) — эффекторное нервное окончание на скелетном мышечном волокне. Входит в состав нервно-мышечного веретена. Нейромедиатором в этом синапсе является ацетилхолин.

Ретикулярная формация (лат. reticulum — сеточка, formatio — образование) — это образование, тянущееся вдоль всей оси ствола головного мозга. Своим названием оно обязано сетчатой структуре, образуемой его нервными клетками с очень сложными связями. Формация состоит из ретикулярных ядер и большой сети нейронов с разветвлёнными аксонами и дендритами, представляющих единый комплекс, который осуществляет активацию коры головного мозга и контролирует рефлекторную деятельность спинного мозга. Эта сеть нейронов…

Средний мозг, или мезэнцефалон (англ. Midbrain, лат. Mesencephalon; термин «мезэнцефалон» происходит от др.-греч. μέσος — «месос» — средний, и ἐγκέφᾰλος — «энкефалос» — буквально «находящийся внутри головы», то есть головной мозг) — это отдел головного мозга хордовых животных, развивающийся из среднего из трёх первичных мозговых пузырей эмбриона. Этот отдел мозга ответствен за осуществление многих важных физиологических функций, таких, как зрение, слух, контроль движений, регуляция циклов сна и бодрствования…

Мозжечо́к (лат. cerebellum — дословно «малый мозг») — отдел головного мозга позвоночных, отвечающий за координацию движений, регуляцию равновесия и мышечного тонуса. У человека располагается позади продолговатого мозга и варолиева моста, под затылочными долями полушарий головного мозга. Посредством трёх пар ножек мозжечок получает информацию из коры головного мозга, базальных ганглиев, экстрапирамидной системы, ствола головного мозга и спинного мозга. У различных таксонов позвоночных взаимоотношения…

Мозгово́й ствол, или ствол головного мозга, — традиционно выделяющийся отдел третьего мозга, представляющий собой протяжённое образование, продолжающее спинной мозг.

Ганглионарная (ганглиозная) клетка — нервная клетка (нейрон) сетчатки глаза, способная генерировать нервные импульсы в отличие от других типов нейронов сетчатки (биполярных, горизонтальных, амакриновых). В их цитоплазме хорошо выражено базофильное вещество. Ганглионарные клетки граничат со стекловидным телом глаза и образуют слой сетчатки, который первым получает свет. Их аксоны по поверхности сетчатки направляются к слепому пятну (пятно Мариотта), собираются в зрительный нерв и направляются в мозг…

Конечный мозг (лат. telencephalon) — самый передний отдел головного мозга. Состоит из двух полушарий большого мозга (покрытых корой), мозолистого тела, полосатого тела и обонятельного мозга. Является наиболее крупным отделом головного мозга. Это также самая развитая структура, покрывающая собой все отделы головного мозга.

Дендритный шипик — мембранный вырост на поверхности дендрита, способный образовать синаптическое соединение. Шипики обычно имеют тонкую дендритную шейку, оканчивающуюся шарообразной дендритной головкой. Дендритные шипики обнаруживаются на дендритах большинства основных типов нейронов мозга. В создании шипиков участвует белок калирин.

Эпиталамус (буквально «надталамус») — это самая дорсальная (верхняя) задняя часть таламического мозга, или, иначе говоря, таламической области — той части промежуточного мозга, куда, помимо эпиталамуса, входят также таламус, субталамус и метаталамус, но не входят гипоталамус и гипофиз, причисляемые к гипоталамической области. Эпиталамус возвышается над таламусом. В число его структур входят поводок эпиталамуса, также называемый поводком мозга, треугольник поводка, спайка поводков, подспаечный орган…

Передний мозг, или прозэнцефалон (лат. prosencephalon, англ. forebrain) — это отдел головного мозга хордовых животных, выделяемый на основании особенностей его эмбрионального развития у этих видов животных. Передний мозг (прозэнцефалон) является одним из трёх первичных мозговых пузырей, образующихся в первичной нервной трубке вскоре после нейруляции и образования нейромер, на так называемой трёхпузырьковой стадии развития ЦНС эмбриона. Двумя другими первичными мозговыми пузырями являются средний…

Миоци́ты, или мы́шечные клетки — особый тип клеток, составляющий основную часть мышечной ткани. Миоциты представляют собой длинные, вытянутые клетки, развивающиеся из клеток-предшественников — миобластов. Существует несколько типов миоцитов: миоциты сердечной мышцы (кардиомиоциты), скелетной и гладкой мускулатуры. Каждый из этих типов обладает особыми свойствами. Например, кардиомиоциты, помимо прочего, генерируют электрические импульсы, задающие сердечный ритм.

Головно́й мозг (лат. cerebrum, др.-греч. ἐγκέφαλος) — главный орган центральной нервной системы подавляющего большинства хордовых, её головной конец; у позвоночных находится внутри черепа. В анатомической номенклатуре позвоночных, в том числе человека, мозг в целом чаще всего обозначается как encephalon — латинизированная форма греческого слова; изначально латинское cerebrum стало синонимом большого мозга (telencephalon).

Спинно́й мозг (лат. medulla spinalis) — орган центральной нервной системы позвоночных, расположенный в позвоночном канале. Принято считать, что граница между спинным и головным мозгом проходит на уровне перекреста пирамидных волокон (хотя эта граница весьма условна). Внутри спинного мозга имеется полость, называемая центральным каналом (лат. canalis centralis). Спинной мозг защищён мягкой, паутинной и твёрдой мозговой оболочкой. Пространства между оболочками и спинномозговым каналом заполнены спинномозговой…

Бледный шар (лат. globus pallidus s. pallidum) — парная структура переднего мозга, относящаяся к базальным ядрам, часть чечевицеобразного ядра, вентромедиальная часть полосатого тела. Подразделяется на латеральную и медиальную части.

Промежуточный мозг, или диэнцефалон (лат. Diencephalon, англ. Diencephalon; термин «диэнцефалон» происходит от др.-греч. διά — «диа-», обозначающее «через», «между», и ἐγκέφαλος — «энкефалос», буквально «находящийся внутри головы», то есть головной мозг) — отдел головного мозга хордовых животных, который образуется в процессе эмбрионального развития из задней части зародышевого переднего мозга (прозэнцефалона). На пятипузырьковой стадии из задней части зародышевого переднего мозга (прозэнцефалона…

Олигодендроциты, или олигодендроглия — это вид нейроглии, открытый Пио дель Рио-Ортегой (1928 год). Олигодендроциты есть только в центральной нервной системе, которая у позвоночных включает в себя головной мозг и спинной мозг.

Синаптогенез — процесс формирования синапсов между нейронами в нервной системе. Синаптогенез происходит на протяжении всей жизни здорового человека, а взрыв формирования синапсов, т. н. избыточный синаптогенез (exuberant synaptogenesis), наблюдается на ранних стадиях развития головного мозга. Синаптогенез особенно важен в ходе критического периода развития особи (в биологии развития, такого периода, когда нервная система особенно чувствительна к экзогенным стимулам), когда имеет место быть интенсивное…

Хвостатое ядро (лат. nucleus caudatus) — парная структура головного мозга, относящаяся к стриатуму. Расположена спереди от таламуса, от которого (на горизонтальном срезе) его отделяет белая полоска вещества — внутренняя капсула. Передний отдел хвостатого ядра утолщён и образует головку, caput nuclei caudati, которая составляет латеральную стенку переднего рога бокового желудочка. Головка хвостатого ядра примыкает внизу к переднему продырявленному веществу, в этом месте головка соединяется с чечевицеобразным…

Продолговатый мозг (лат. myelencephalon, medulla oblongata), или луковица головного мозга (лат. bulbus cerebri), — задний отдел головного мозга, непосредственное продолжение спинного мозга. Происходит из ромбовидного мозга и входит в ствол головного мозга. Регулирует такие основные процессы жизнедеятельности, как дыхание и кровообращение, поэтому в случае повреждения продолговатого мозга мгновенно наступает смерть.

Химический синапс — особый тип межклеточного контакта между нейроном и клеткой-мишенью. У данного типа синапса роль посредника (медиатора) передачи выполняет химическое вещество.

Электри́ческий си́напс (англ. electrical synapse) — место высокоспециализированных контактов (щелевых контактов) между нейронами, где происходит прямое перетекание электрических токов от одного нейрона к другому. В щелевых контактах мембраны соседних клеток находятся на расстоянии около 3,8 нм, в то время как в химическом синапсе расстояние между двумя нейронами составляет от 20 до 40 нм. У многих животных в нервной системе имеются как химические, так и электрические синапсы. По сравнению с химическими…

Упоминания в литературе (продолжение)

Основная единица нервной системы — нервная клетка (нейрон). Нейроны покрыты глиальными клетками, доставляющими им питание и удерживающими их на месте. Каждая нервная клетка состоит из тела, дендрита и аксона. В периферической нервной системе аксоны собраны в пучки – нервы. Бо́льшая часть аксонов покрыта миелиновой оболочкой, которая увеличивает скорость передачи информации в нервной системе, а также препятствует передаче нервных импульсов близлежащим клеткам. Современные исследователи опровергли бытовавшее ранее мнение о том, что «нервные клетки не восстанавливаются». Доказано, что клетки в зонах мозга, связанных с памятью и процессом обучения, продолжают развиваться и делиться в течение жизни человека.

Нервные клетки имеют несколько отростков – чувствительных древовидно ветвящихся дендритов, которые проводят к телу нейронов возбуждение, возникающее на их чувствительных нервных окончаниях, расположенных в органах, и одних двигательный аксон, по которому нервный импульс передается от нейрона к рабочему органу или другому нейрону. Нейроны вступают друг с другом в контакт с помощью окончаний отростков, образуя рефлекторные цепи, по которым передаются (распространяются) нервные импульсы.

От нервных центров по основному отростку (аксону) идут сигналы к каждой клетке и каждому органу тела, заставляя их путем электрической стимуляции выполнять определенную функцию. Нервные центры состоят из сотен и даже тысяч нервных клеток. Соответственно, существует такое же количество аксонов. Они собираются в пучки (так называемые тракты), которые, соединяясь вместе, образуют общий «кабель» – спинной мозг.

Основной ее элемент – нейрон: микроскопически малая нервная клетка с отходящими от нее отростками. Длинный отросток называется аксоном, короткий древовидной формы – дендритом. Посредством этих отростков все нервные клетки связаны между собой. Место соединения отростков называется синапсом. Пучки нервных волокон, идущие к поверхности тела, к внутренним органам и мышцам, образуют периферическую нервную систему. Разветвленные окончания нервных волокон образуют органы чувств.

Вспомогательные клетки нейроглии (астроциты) не только создают физическую опору для нейронов, но вместе с сосудами обеспечивают потребности нервной ткани в кислороде и необходимых для жизни веществах, включая аминокислоты, липиды, гликопротеиды. Тело нервной клетки имеет микроскопические размеры, но длина аксона может достигать одного метра! Отростки нейронов, как правило, укрыты миелиновой оболочкой, которая обеспечивает стабильность обмена веществ в длинных нервных проводниках и высокую скорость передачи возбуждения.

Нейрон представляет собой микроскопически малую нервную клетку с отходящими от нее отростками. Длинный отросток называется аксоном, короткий древовидной формы – дендритом. Посредством этих отростков все нервные клетки связаны между собой. Место соединения отростков называется синапсом. Пучки нервных волокон, идущие к поверхности тела, к внутренним органам и мышцам, образуют периферическую нервную систему. Разветвленные окончания нервных волокон образуют органы чувств.

Главная структурная и функциональная единица нервной системы – нейрон, представляющий собой клетку с отростками – длинным аксоном и короткими дендритами. Нейроны соединяются между собой синапсами, образуя нейронные цепи, приводимые в действие рефлекторно: в ответ на раздражение, поступаемое из внешней или внутренней среды, возбуждение из нервных окончаний передается по центростремительным волокнам в головной и спинной мозг, оттуда импульсы по центробежным волокнам поступают в различные органы, а по двигательным – к мышцам.

Аксон – вырост цитоплазмы, приспособленный для проведения информации, которая собирается ден-дритами и перерабатывается в нейроне. Аксон дендритной клетки имеет постоянный диаметр и покрыт миелиновой оболочкой, которая образована из глии, у аксона разветвленные окончания, в которых находятся митохондрии и секреторные образования.

Два слова о строении нейрона. У него есть центральная толстенькая часть – «тело», в котором находится клеточное ядро с генами. От тела отходят два вида отростков: «входные» (дендриты) и «выходные» (аксоны). Дендритов обычно много, а аксон, как правило, один, но на конце он может ветвиться.

При поражении центров коры головного мозга очень важна локализация, ведь повреждения происходят на микроскопическом уровне. Головной мозг состоит из нейронов и глиальных клеток, которые соединены между собой сложными проводимыми путями – аксонами и дендритами. По ним передаются нервные импульсы. Все мы еще со школьного курса биологии знаем, что в головном мозге есть серое и белое вещества. Серым веществом является скопление нейронов и коротких проводимых путей между ними. А вот белое вещество составляют длинные, сложные проводимые пути – нервные волокна, которые покрыты особой миелиновой оболочкой – она необходима для нормального прохождения импульсов и подобна изоляционной ленте на электрическом проводе.

В состоянии относительного физиологического покоя синапс находится в фоновой биоэлектрической активности. Ее значение заключается в том, что она повышает готовность синапса к проведению нервного импульса. В состоянии покоя 1–2 пузырька в терминале аксона могут случайно подойти к пресинаптической мембране, в результате чего вступят с ней в контакт. Везикула при контакте с пресинаптической мембраной лопается и ее содержимое в виде одного кванта АХ поступает в синаптическую щель, попадая при этом на постсинаптическую мембрану, где будет образовываться МПКН.

В состоянии относительного физиологического покоя синапс находятся в фоновой биоэлектрической активности. Ее значение заключается в том, что она повышает готовность синапса к проведению нервного импульса. В состоянии покоя 1–2 пузырька в терминале аксона могут случайно подойти к пресинаптической мембране, в результате чего вступят с ней в контакт. Везикула при контакте с пресинаптической мембраной лопается, и ее содержимое в виде 1 кванта АХ поступает в синаптическую щель, попадая при этом на постсинаптическую мембрану, где будет образовываться МПКН.

Таким образом, нейрофизиологические и психофизиологические механизмы tDCS и ТКМП достаточно многообразны, даже при приложении стандартизированных параметров тока и площади электродов (при tDCS). Нам представляется маловероятным сведение механизмов поляризаций к делоляризации или гиперполяризации мембраны нейронов. Если для пирамидных нейронов с их пространственной ориентацией в коре можно себе представить, что, например, при анодной поляризации входящий (гиперполяризующий) ток протекает преимущественно через дендрита, а выходящий (деполяризующий) ток – через начальный сегмент аксона (где генерируются спайки), вызывая его деполяризацию и увеличение возбудимости моторной коры, то это допущение плохо приложимо к другим областям коры, где ориентация нейронов не столь очевидна. Кроме того, возбуждающие или тормозные потенциалы длятся не более 10 мсек. Пассивная деполяризация мембраны еще короче. Установленные эффекты tDCS длятся десятки минут, а то и дольше. Следовательно, де– или гиперполяризация, если и играют существенную роль в возникновении эффектов, то она сводится к пусковой роли, запускающей каскад синаптических и метаболических реакций которые и лежат в основе более длительных эффектов поляризаций.

Надо сказать, что нейрон устроен очень интересно: у него, как у всякого компьютера, есть корпус – тело. И все же славится нейрон не этим, главное в нем – это его отростки. Весь нейрон чем-то напоминает дерево, которое имеет развитую крону и ствол. Крону у дерева образуют ветки, а у нейрона это короткие отростки, они называются дендритами. У дерева ствол, а у нейрона – длинный отросток, аксон. А теперь о месте соединения нервных клеток – это синапс. Если два компьютера соединить шнуром, то контакт компьютера и шнура будет как раз тем самым синапсом в нервной системе.

Активность генов в нейронах основана на свойствах молекул ДНК, т. е. активность вызвана причинно-следственными связями, которые определяют особенности контактов молекул ДНК с окружающими атомами и молекулами. В свою очередь, активность генов является причиной всех событий клеточного метаболизма и, значит, обмена веществ между нейронами и с окружающей средой. Все процессы в сообществе нервных клеток (клеточном сообществе – КС) – рождение клеток, их возбуждение и торможение, функциональная специализация и формирование в них устойчивых молекулярных структур, синтез в клетках нейромедиаторов и образование у них аксонов, дендритов и шипиков, образование и разрыв межклеточных связей, распространение и прекращение возбуждений в сообществе, гибель клеток – это детерминистские процессы. Так у нейронов в течение суток изменяются параметры метаболизма: количество и соотношение синтезируемых и разлагающихся веществ, в т. ч. количество синтезируемых нейромедиаторов и гормонов. У нейронов, как и у всех организмов, имеются суточные ритмы. В соответствии с этими ритмами в продолжение суток изменяются состав и количество клеток, возбуждающихся от воздействий окружающей среды и следов таких воздействий, результаты конкуренции клеток и узлов за прекращение своего возбуждения, используемые возбуждениями маршруты связей между клетками, конфигурация формирующихся способов прекращения возбуждений, распространяющихся из одних и тех же узлов.

Другая часть коллатералей соединяется с клетками ядра Кларка, расположенного в заднем роге спинного мозга. Данное ядро расположено от VIII шейного до II поясничного сегментов по длиннику спинного мозга. Клетки грудного ядра являются вторыми нейронами, чьи аксоны образуют задний спиномозжечковый путь. Коллатерали, идущие от задних корешков шейных сегментов, входят в состав клиновидного пучка, идут вверх к его ядру и к дополнительному клиновидному ядру. Его аксоны соединяются с мозжечком. Третья группа коллатеральных афферентных волокон заканчивается в задних рогах спинного мозга. Там расположены вторые нейроны, чьи аксоны образуют передний спино-мозжечковый путь.

Соответственно существует такое же количество аксонов. Они собираются в пучки (так называемые тракты), которые, соединяясь вместе, образуют общий «кабель» – спинной мозг.

Двигательная единица – это отдельный мотонейрон и мышечные волокна, которые он иннервирует. Таким образом, нейрон определяет, являются ли волокна медленно или быстро сокращающимися. Мотонейрон в МС двигательной единице имеет небольшое клеточное тело и иннервирует группу из 10-180 мышечных волокон. У мотонейрона в БС двигательной единице большое клеточное тело и больше аксонов, и он иннервирует от 300 до 800 мышечных волокон. Отсюда следует, что каждый МС-мотонейрон в состоянии активировать значительно меньшее количество мышечных волокон в противоположность БС-мотонейрону. При этом необходимо отметить, что сила, производимая отдельными МС- и БС-волокнами по величине отличается незначительно. МС- и БС-волокна имеют разные функции во время физической активности. МС-волокнам присущ высокий уровень аэробной выносливости, они эффективны в производстве АТФ на основе окисления углеводов и жиров и более приспособлены к выполнению длительной работы невысокой интенсивности. Быстро сокращающиеся мышечные волокна приспособлены к анаэробной деятельности (без кислорода), и при их работе АТФ образуется благодаря анаэробным реакциям. Б С двигательные единицы производят большую силу, однако легко устают ввиду ограниченной выносливости и используются главным образом при выполнении кратковременной работы высокой интенсивности.

• длинный отросток, отходящий от тела клетки, который тянется на большое расстояние – до 1,5–1,7 м. Он составляет основной, или осевой, отросток нервной клетки. Его называют аксоном (в переводе с латыни axis — ось, основание, основной).

Другая часть коллатералей соединяется с клетками ядра Кларка, расположенного в заднем роге спинного мозга. Данное ядро расположено от VIII шейного до II поясничного сегментов по длиннику спинного мозга. Клетки грудного ядра являются вторыми нейронами, чьи аксоны образуют задний спиномозжечковый путь.

Формирование мышечной ткани начинается на 4-6-й неделе внутриутробного развития. В это время формируются первичные мышечные волокна. Несколько позже в мышцы прорастают аксоны мотонейронов спинного мозга. С этой стадии начинается синхронное формирование нервно-мышечного аппарата, причем определяющее значение имеет развитие нервных элементов, происходящее на 6-7-м месяцах внутриутробного развития. К моменту рождения примерно половина мышечных волокон уже прошла стадию первичной дифференцировки, и уже определены как «белые» или «красные». Дифференцировочные процессы усиливаются в возрасте от 1 до 2 лет, а затем на стадии полового созревания.

Нейросекреторные клетки, как и обычные нервные клетки, воспринимают сигналы, поступающие к ним от других отделов нервной системы, но далее передают полученную информацию уже гуморальным путем (не по аксонам, а по сосудам) – посредством нейрогормонов. Таким образом, совмещая свойства нервных и эндокринных клеток, нейросекреторные клетки объединяют нервные и эндокринные регуляторные механизмы в единую нейроэндокринную систему. Этим обеспечивается, в частности, способность организма адаптироваться к изменяющимся условиям внешней среды. Объединение нервных эндокринных механизмов регуляции осуществляется на уровне гипоталамуса и гипофиза.

Гидроцефалический (интерстициальный) отек. Еще одной формой отека головного мозга, сопровождающейся увеличением объема интерстициального пространства, является гидроцефалический отек, обусловленный блокадой путей, соединяющих интерстициальное пространство головного мозга с макроскопическими ликворосодержащими пространствами. Для клинициста эта форма отека имеет практическое значение. Так, у больных с острой гидроцефалией в начале происходит увеличение объема интерстициальной жидкости в перивентрикулярных отделах. Узкие в норме пространства между глиальными клетками и аксонами расширяются. Астроциты набухают, атрофируются и погибают. У больных с хронической гидроцефалией деструкция аксонов, разрушение миелина, фагоцитоз липидов микроглии являются характерными гистологическими признаками. Кроме стаза внеклеточной жидкости, причиной отека у этих больных может быть и обратный ток спинномозговой жидкости из желудочков мозга. Так же, как и при любой иной форме отека мозга, в зоне отек; снижается регионарный мозговой кровоток. По-видимому, часть функциональных расстройств в ЦНС, наблюдаемых у больных с гидроцефалией, обусловлена снижением регионарного кровотока в зоне отека.

Эти два гормона относятся к особой группе, поскольку, синтезируясь в гипоталамусе, транспортируются по аксонам (отросткам нейронов) в задний гипофиз и там выделяются в системный кровоток.

Между концами может остаться небольшой диастаз, но он не должен превышать 1 мм. Свободный промежуток между концами нерва заполнит гематома, а в дальнейшем образуется соединительно—тканная прослойка, через эту гематому и соединительную ткань будут прорастать тяжи швашювских клеток и вновь сформированные аксоны.

Нервная система состоит из нейронов (специфических клеток, имеющих отростки) и нейроглии (она заполняет пространство между нервными клетками в ЦНС). Главное отличие между ними заключается в направлении передачи нервного импульса. Дендриты – это принимающие ответвления, по ним сигнал идет к телу нейрона. Передающие клетки – аксоны – проводят сигнал от сомы к принимающим. Это могут быть не только отростки нейрона, но и мышцы.

дендриты это

Отличия аксонов и дендритов

Какова же разница между ними? Рассмотрим.

  1. Дендрит нейрона короче передающего отростка.
  2. Аксон всего один, принимающих ответвлений может быть много.
  3. Дендриты сильно ветвятся, а передающие отростки начинают разделяться ближе к концу, образуя синапс.
  4. Дендриты истончаются по мере удаления от тела нейрона, толщина аксонов практически неизменна по всей длине.
  5. Аксоны покрыты миелиновой оболочкой, состоящей из липидных и белковых клеток. Она выполняет роль изолятора и защищает отросток.

Поскольку нервный сигнал передается в виде электрического импульса, клеткам необходима изоляция. Её функции выполняет миелиновая оболочка. Она имеет мельчайшие разрывы, способствующие более быстрой передаче сигнала. Дендриты – это безоболочечные отростки.

Определение

Мозговое вещество – высокоорганизованная структура, образованная нервными клетками, от которых отходят аксоны. Из нервных клеток состоит мозговая ткань. Аксон в переводе с греческого означает «ось» – это такой отросток, элемент мозгового вещества, который обеспечивает взаимодействие между клетками разного типа (нейроны, клетки иннервируемых органов), что ассоциируется с тонким, четким управлением работой органов и систем. Функции ткани ЦНС:

  1. Воспринимает раздражения, преобразуя их в импульсы.
  2. Поддерживает передачу импульсов от управляющих отделов мозга к исполнительным органам.
  3. Формирует ответную реакцию на раздражающее воздействие.
  4. Обеспечивает взаимодействие в работе систем и органов, поддерживает интеграцию структурных единиц организма.
  5. Обеспечивает взаимосвязь организма с внешней средой.

Согласно определению в биологии, аксон (англ. axon) – удлиненный отросток, по которому идут импульсы от тела нейрона к другим нервным клеткам и структурным элементам всех тканей организма. Мозговая ткань в период внутриутробного развития образуется из нервной пластины. Края пластинки прогибаются, что приводит к формированию валиков и желобка. В результате смыкания краев валиков возникает нервная трубка – основа ЦНС.

Дифференциация клеток, образующих трубку, приводит к появлению нейробластов и спонгиобластов. Первые служат основой для формирования нейронов, вторые – для образования нейроглии. Нейроны (анат.) – основные структурные элементы мозгового вещества. Они характеризуются отсутствием функции деления, что приводит к постепенному уменьшению их численности. Тело нейрона состоит из ядра и цитоплазмы. В зависимости от типа нейронов меняется геометрическая форма тела, которая бывает круглая, овальная, пирамидальная и другая.

строение нейрона

Цитоскелет, состоящий из микротрубочек и нейрофибриллов, обеспечивает опорную и трофическую функцию. Цитоскелет поддерживает форму нейрона, обеспечивает транспорт веществ и органелл. От тела ответвляются отростки – единичный аксон и множественные дендриты. Аксон нейрона почти не ветвится, иногда образует коллатеральные (обходные) сегменты. Концевые сегменты (окончания) разветвляются, называются терминали.

Терминали взаимосвязаны с окончаниями других нейронов и с клетками, образующими паренхиму (ткань) рабочих органов – мышц, желез. Количество дендритов варьируется от 1 до нескольких. Тонкие ответвления дендритов оканчиваются небольшими шипами, где сосредоточены терминали аксональных отростков многих тысяч других клеток. Дендриты воспринимают раздражения или потенциалы действия от других клеток и передают их по волокнам к телу своего нейрона.

Рост аксона зависит от особенностей строения и жизнедеятельности нейрона, который поддерживает функцию питания отростка. К примеру, если перерезать аксональный ствол, сегмент, связанный с телом, остается жизнеспособным и продолжает деятельность, участок, утративший связь с телом, отмирает. Аксоны образуют нервы, что предполагает сложную структурно-морфологическую организацию ЦНС.

цнс человека

Синапс

Место, в котором происходит контакт между ответвлениями нейронов или между аксоном и принимающей клеткой (например, мышечной), называется синапсом. В нем может участвовать всего по одному ответвлению от каждой клетки, но чаще всего контакт происходит между несколькими отростками. Каждый вырост аксона может контактировать с отдельным дендритом.

дендрит нейрона

Сигнал в синапсе может передаваться двумя способами:

  1. Электрическим. Это происходит только в случае, когда ширина синаптической щели не превышает 2 нм. Благодаря такому маленькому разрыву импульс проходит через него, не задерживаясь.
  2. Химическим. Аксоны и дендриты вступают в контакт благодаря разнице потенциалов в мембране передающего отростка. С одной ее стороны частицы имеют положительный заряд, с другой – отрицательный. Это обусловлено разной концентрацией ионов калия и натрия. Первые находятся внутри мембраны, вторые – снаружи.

При прохождении заряда увеличивается проницаемость мембраны, и натрий входит в аксон, а калий выходит из него, восстанавливая потенциал.

Сразу после контакта отросток становится невосприимчивым к сигналам, через 1 мс способен к передаче сильных импульсов, через 10 мс возвращается в исходное состояние.

Дендриты – это принимающая сторона, передающая импульс от аксона телу нервной клетки.

Особенности, характерные для типичных дендритов и аксонов

⇐ ПредыдущаяСтр 3 из 14Следующая ⇒

Дендриты Аксоны
От тела нейрона отходит несколько дендритов У нейрона имеется только один аксон
Длина редко превышает 700 мкм Длина может достигать 1 м
По мере удаления от тела клетки диаметр быстро уменьшается Диаметр сохраняется на значительном расстоянии
Образовавшиеся в результате деления ветви локализуются возле тела Терминали располагаются далеко от тела клетки
Имеются шипики Шипики отсутствуют
Не содержат синаптических пузырьков Содержат в большом числе синаптические пузырьки
Содержат рибосомы Рибосомы могут обнаруживаться в незначительном числе
Лишены миелиновой оболочки Часто окружены миелиновой оболочкой

Терминали дендритов чувствительных нейронов образуют чувствительные окончания. Основной функцией дендритов является получение информации от других нейронов. Дендриты проводят информацию к телу клетки, а затем к аксонному холмику.

Аксон. Аксоны образуют нервные волокна, по которым передается информация от нейрона к нейрону или к эффекторному органу. Совокупность аксонов образует нервы.

Общепринято подразделение аксонов на три категории: А, В и С. Волокна группы А и В являются миелинизированными, а С – лишены миелиновой оболочки. Диаметр волокон группы А, которые составляют большинство коммуникаций центральной нервной системы, варьирует от 1 до 16 мкм, а скорость проведения импульсов равна их диаметру, умноженному на 6. Волокна типа А подразделяются на Аa, Аb, Аl, Аs. Волокна Аb, Аl, Аs имеют меньший диаметр, чем волокна Аa, меньшую скорость проведения и более длительный потенциал действия. Волокна Аb и Аs являются преимущественно чувствительными волокнами, которые проводят возбуждение от различных рецепторов в ЦНС. Волокна Аl – это волокна, которые проводят возбуждение от клеток спинного мозга к интрафузальным мышечным волокнам. В-волокна являются характерными для преганглионарных аксонов вегетативной нервной системы. Скорость проведения 3-18 м/с, диаметр 1-3 мкм, продолжительность потенциала действия 1-2 мс, нет фазы следовой деполяризации, а есть длительная фаза гиперполяризации (более 100 мс). Диаметр С-волокон от 0,3 до 1,3 мкм, и скорость проведения импульсов в них несколько меньше величины диаметра, умноженного на 2, и равняется 0,5-3 м/с. Длительность потенциала действия этих волокон составляет 2 мс, отрицательный следовой потенциал равняется 50-80 мс, а положительный следовой потенциал – 300-1000 мс. Большинство С-волокон являются постганглионарными волокнами вегетативной нервной системы. В миелинизированных аксонах скорость проведения импульсов выше, чем в немиелизированных.

Аксон содержит аксоплазму. У крупных нервных клеток ей принадлежит около 99% всей цитоплазмы нейрона. Цитоплазма аксонов содержит микротрубочки, нейрофиламенты, митохондрии, агранулярный эндоплазматический ретикулум, везикулы и мультивезикулярные тела. В разных частях аксона существенно меняются количественные отношения между этими элементами.

У аксонов, как миелинизированных, так и немиелизированных, есть оболочка – аксолемма.

В зоне синаптического контакта мембрана получает ряд дополнительных цитоплазматических соединений: плотные выступы, ленты, субсинаптическая сеть и др.

Начальный участок аксона (от его начала до того места, где наступает сужение до диаметра аксона) носит название аксонного холмика. От этого места и появления миелиновой оболочки простирается начальный сегмент аксона. В немиелинизированных волокнах эта часть волокна определяется с трудом, а некоторые авторы считают, что начальный сегмент присущ только тем аксонам, которые покрыты миелиновой оболочкой. Он отсутствует, например, у клеток Пуркинье в мозжечке.

В месте перехода аксонного холмика в начальный сегмент аксона под аксолеммой появляется характерный электронноплотный слой, состоящий из гранул и фибрилл, толщиной 15 нм. Этот слой не связан с плазматической мембраной, а отделен от нее промежутками до 8 нм.

В начальном сегменте по сравнению с телом клетки резко уменьшается количество рибосом. Остальные компоненты цитоплазмы начального сегмента – нейрофиламенты, митохондрии, везикулы – переходят из аксонного холмика сюда, не изменяясь ни по внешнему виду, ни по взаиморасположению. На начальном сегменте аксона описаны аксо-аксональные синапсы.

Часть аксона, покрытая миелиновой оболочкой, обладает только ей присущими функциональными свойствами, которые связаны с проведением нервных импульсов с большой скоростью и без декремента (затухания) на значительные расстояния. Миелин является продуктом жизнедеятельности нейроглии. Проксимальной границей у миелинизированного аксона служит начало миелиновой оболочки, а дистальной – утрата ее. Далее следуют более или менее длинные терминальные отделы аксона. В этой части аксона отсутствует гранулярный эндоплазматический ретикулум и очень редко встречаются рибосомы. Как в центральных отделах нервной системы, так и на периферии аксоны окружены отростками глиальных клеток.

Миелинизированная оболочка имеет сложное строение. Ее толщина варьирует от долей до 10 мкм и более. Каждая из концентрически расположенных пластинок состоит из двух наружных плотных слоев, образующих главную плотную линию, и двух светлых бимолекулярных слоев липидов, разделенных промежуточной осмиофильной линией. Промежуточная линия аксонов периферической нервной системы представляет собой соединение наружных поверхностей плазматических мембран шванновской клетки. Каждый аксон сопровождается большим числом шванновских клеток. Место, где шванновские клетки граничат между собой, лишено миелина и называется перехватом Ранвье. Между длиной межперехватного участка и скоростью проведения нервных импульсов есть прямая зависимость.

Перехваты Ранвье составляют сложную структуру миелинизированных волокон и играют важную функциональную роль в проведении нервного возбуждения.

Протяженность перехвата Ранвье миелинизированных аксонов периферических нервов находится в пределах 0,4-0,8 мкм, в центральной нервной системе перехват Ранвье достигает 14 мкм. Длина перехватов довольно легко изменяется под действием различных веществ. В области перехватов, помимо отсутствия миелиновой оболочки, наблюдаются значительные изменения структуры нервного волокна. Диаметр крупных аксонов, например, уменьшается наполовину, мелкие аксоны изменяются меньше. Аксолемма имеет обычно неправильные контуры, и под ней лежит слой электронноплотного вещества. В перехвате Ранвье могут быть синаптические контакты как с прилежащими к аксону дендритами (аксо-дендритические), так и с другими аксонами.

Коллатерали аксонов. С помощью коллатералей происходит распространение нервных импульсов на большее или меньшее число последующих нейронов.

Аксоны могут делиться дихотомически, как, например, у зернистых клеток мозжечка. Очень часто встречается магистральный тип ветвления аксонов (пирамидные клетки коры мозга, корзинчатые клетки мозжечка). Коллатерали пирамидных нейронов могут быть возвратными, косоидущими и горизонтальными. Горизонтальные ответвления пирамид простираются иногда на 1-2 мм, объединяя пирамидные и звездчатые нейроны своего слоя. От горизонтально распространяющегося (в поперечном направлении к длинной оси извилины мозга) аксона корзинчатой клетки образуются многочисленные коллатерали, которые заканчиваются сплетениями на телах крупных пирамидных клеток. Подобные аппараты, так же как и окончания на клетках Реншоу в спинном мозге, являются субстратом для осуществления процессов торможения.

Коллатерали аксонов могут служить источником образования замкнутых нейронных цепей. Так, в коре больших полушарий все пирамидные нейроны имеют коллатерали, которые принимают участие во внутрикорковых связях. За счет существования коллатералей обеспечивается в процессе ретроградной дегенерации сохранность нейрона в том случае, если повреждается основная ветвь его аксона.

Терминали аксонов. К терминалям относятся дистальные участки аксонов. Они лишены миелиновой оболочки. Протяженность терминалей значительно варьирует. На светооптическом уровне показано, что терминали могут быть либо одиночными и иметь форму булавы, сетевидной пластинки, колечка, либо множественными и походить на кисть, чашевидную, моховидную структуру. Размер всех этих образований изменяется от 0,5 до 5 мкм и более.

Тонкие разветвления аксонов в местах контакта с другими нервными элементами нередко имеют веретеновидные или бусинковидные расширения. Как показали электронно-микроскопические исследования, именно в этих участках имеются синаптические соединения. Одна и та же терминаль дает возможность одному аксону устанавливать контакт с множеством нейронов (например, параллельные волокна в коре головного мозга) (рис. 1.2).

Функции нервных волокон

Распространение возбуждения в нервных волокнах.Изменения мембранного потенциала, вызываемые электрическим током, подразделяются на пассивные и активные.

Пассивные, или электротонические, изменения мембранного потенциала определяются физическими (электрическими) параметрами как самой мембраны, так и всей клетки (волокна) в целом.

Пассивные сдвиги мембранного потенциала возникают при действии на возбудимые образования электрического тока любой силы, формы или направления. Однако если при гиперполяризующем (анодном) и слабом деполяризующем (катодном) токах пассивные изменения потенциала могут наблюдаться в чистом (неосложненном) виде, то при близких к порогу и сверхпороговых деполяризующих стимулах они сопровождаются активными сдвигами потенциала: локальным ответом и потенциалом действия, связанными с изменениями ионной проницаемости мембраны.

Пассивные свойства мембраны и всего волокна в целом в значительной мере определяют условия возникновения и распространения возбуждения в нервном волокне.

Исследования показывают, что в однородно поляризуемом, однородном участке нервного волокна изменения мембранного потенциала при приложении прямоугольного толчка гиперполяризующего или слабого деполяризующего тока нарастают по экспоненте:

,

где RC = τ

– постоянная времени мембраны, т.е. время, в течение которого потенциал нарастает до 63% от своей конечной величины. При выключении тока потенциал возвращается к исходному уровню по экспоненте с той же постоянной времени
τ
. Такие изменения мембранного потенциала принято называть пассивными или электротоническими, в отличие от активных, связанных с повышением или снижением ионных проводимостей мембраны.

Подобные изменения наблюдаются на сферических клетках (на соме). Описание цилиндрической клетки, в частности аксона, более сложно. В этом случае уже нельзя считать внутренний проводник эквипотенциальным по всей длине. Внешний проводник можно считать эквипотенциальным за счет увеличения объема внеклеточной жидкости. Потенциал на такой мембране зависит не только от времени включения тока, но и от расстояния х

по отношению к месту приложения тока:

,

где а

– радиус волокна,
R
– удельное сопротивление аксоплазмы,

и

– емкость и сопротивление на единицу площади мембраны. Левая часть уравнения описывает плотность тока через каждую точку мембраны, которая равна сумме плотностей емкостного ()и омического () токов, стоящих в правой части уравнения.

Через длительное время (намного большего постоянной времени t = RМ CМ

) после включения импульса емкость мембраны полностью зарядится и емкостный ток станет равным нулю. Уравнение примет вид:

.

Его решение:

,

где V0

– потенциал в начале кабеля (
х
= 0),
l
– постоянная длины волокна.

Постоянная длины характеризует крутизну затухания потенциала вдоль волокна. Чем больше l

, тем дальше по волокну проходит сигнал. Скорость электротонического распространения пропорциональна удвоенной величине константы длины волокна
l
и обратно пропорциональна постоянной времени
t = RМ CМ
. Величина
l
может быть выражена через сопротивление мембраны

, сопротивление внутренней среды – аксоплазмы
Ri
и диаметра волокна
d
:

.

Кабельные свойства нервных волокон оказывают существенное влияние не только на развитие электротонических потенциалов, но и на характер активных ответов – величину порога, амплитуду, крутизну нарастания и длительность потенциала действия.

В настоящее время можно считать строго доказанным, что проведение потенциала действия (ПД) вдоль нервного волокна осуществляется с помощью локальных токов, возникающих между возбужденным и покоящимся участками мембраны. Локальный ток изменяет величину мембранного потенциала покоя в покоящемся участке до критического уровня деполяризации, что и является причиной возникновения потенциала действия.

Многочисленными исследованиями было показано, что скорость проведения пропорциональна постоянной длины волокна l

и обратно пропорциональна постоянной времени мембраны
t
(Чайлохян Л.М., 1962). Поскольку в безмякотных нервных волокнах
l
пропорциональна квадратному корню из диаметра волокна

,

скорость проведения при прочих равных условиях также пропорциональна корню квадратному из диаметра волокна.

В миелинизированных нервных волокнах проведение происходит сальтаторно – от перехвата Ранвье к перехвату Ранвье. Длина межперехватного участка примерно пропорциональна диаметру волокна, поэтому скорость проведения в этих волокнах пропорциональна не корню квадратному из диаметра волокна, а просто его диаметру.

Принято считать, что скорость проведения зависит от величины так называемого фактора безопасности (гарантийности) Ф

, т.е. отношения амплитуды распространяющегося ПД к пороговому потенциалу. Пороговый потенциал – это та величина, на которую нужно изменить мембранный потенциал, чтобы достичь критического уровня деполяризации.

,

где Vs

– амплитуда ПД,
Vt
– пороговый потенциал.

При Ф = Vt

распространения возбуждения нет. Для аксона краба это отношение равно 7.

Было показано, что пороговый потенциал Vt

находится в тесной зависимости от чувствительности системы натриевой проницаемости мембраны к деполяризации. Чем выше эта чувствительность, т.е. чем на большую величину повышается
PNa
и, соответственно, натриевый входящий ток
INa
при данном сдвиге потенциала, тем ниже порог, и наоборот. Изменение состояния системы калиевой проницаемости на величину порогового потенциала практически не оказывает влияния. Точно так же очень мало влияет на пороговый потенциал проводимость токов «утечки». При постоянном потенциале покоя фактор безопасности должен возрастать при воздействиях на нервное волокно, которые повышают чувствительность натриевой системы к деполяризации, например, снижение концентрации ионов кальция в окружающей среде. Значительное снижение фактора безопасности вызывают агенты, усиливающие исходную инактивацию натриевой системы или уменьшающие натриевую проводимость, поскольку в этом случае амплитуда потенциала действия падает, а пороговый потенциал растет. Такие изменения проведения возбуждения наблюдал Тасаки (1957) и другие исследователи при воздействии на нервное волокно анестетиков и наркотиков в малых концентрациях, недостаточных для полного подавления потенциала действия.

Сложное влияние на фактор безопасности оказывает уровень потенциала покоя. Кратковременная подпороговая деполяризация мембраны, не изменяющая существенным образом критического потенциала и амплитуды потенциала действия, повышает фактор безопасности, так как Vt = Eo – Ek

. При сильной же деполяризации амплитуда спайка падает, критический потенциал растет, поэтому фактор безопасности уменьшается.

Наряду с фактором безопасности существенное влияние на скорость проведения возбуждения оказывает крутизна восходящей фазы распространяющегося потенциала действия. Крутизна этой фазы зависит как от пассивных, так и активных свойств мембраны.

Примерно 1/3 восходящей фазы распространяющегося ПД связана с пассивной деполяризацией мембраны нервного волокна током локальной цепи. Скорость же этой деполяризации при данной силе локального тока определяется постоянной времени мембраны t = RM CM

. Чем эта величина меньше, тем быстрее нарастает деполяризация и, следовательно, круче поднимается спайк. Инактивация натриевой системы, или снижение проницаемости для натрия (активные свойства мембраны), резко уменьшает крутизну восходящей фазы. Таким образом, при большинстве воздействий изменения скорости нарастания восходящей фазы ПД по своему направлению совпадают с изменениями фактора безопасности.

Согласно теории локальных токов, амплитуда распространяющегося потенциала действия Vs

, в отличие от мембранного спайка, зависит не только от ЭДС возбужденной мембраны
Е
, но и от соотношения входных сопротивлений возбужденного
R1
и невозбужденного (сопротивление нагрузки
R2
) участков волокна:

. (1)

Чем отношение выше, тем в большей мере амплитуда распространяющегося ПД приближается к величине Е

, тем, следовательно, выше фактор безопасности, и наоборот. Из чего вытекает, что снижение сопротивления мембраны (повышение ее ионной проводимости) при критической деполяризации не только ведет к возникновению спайка, но и способствует увеличению фактора безопасности, а значит, и скорости проведения.

Из формулы (1) ясно, что при проведении возбуждения по геометрически неоднородным возбудимым проводникам амплитуда распространяющегося спайка должна существенно зависеть от того, насколько близко находится возбужденный в данный момент участок волокна к месту его ветвления или расширения.

При расширении нервного волокна, например, в месте перехода его в тело клетки или в области ветвления аксона, суммарная площадь сечения волокон и общая площадь их мембраны увеличивается, а следовательно, R2

падает. Уменьшение
R2
снижает фактор безопасности и, соответственно, скорость проведения. При некоторых условиях уменьшение
R2
может привести к полному блокированию нервного импульса.

Расчеты показали, что потенциал действия легко проходит трехкратное расширение, с трудом пятикратное и полностью блокируется при шестикратном. Причиной развития блока является резкое снижение амплитуды распространяющегося ПД вблизи области расширения волокна.

Трофическая функция нервных волокон.Трофической функцией обладают афферентные и эфферентные волокна.

Афферентные нервы обладают двумя нейротрофическими, неимпульсными функциями. Можно различить прямое морфогенетическое и трофическое влияние на периферические органы и регуляторную функцию с обратной связью, зависящую, вероятно, от внутриаксональных центростремительных импульсов. Нейротрофическое морфогенетическое влияние доказано наличием: а) зависимости структуры вкусовых почек от вкусовых нервов; б) стимулирования регенерации конечности у амфибий чувствительными нервами посредством специфического, стимулирующего рост вещества немедиаторной природы; в) дифференцировки и поддержания рецепторов. После деафферентации в некоторых органах развиваются трофические нарушения. Первичный «трофический» нейрон для мышцы – это нейрон моторный. Нельзя забывать также, что во всех нервах проходят эфферентные адренергические волокна, вкоторых нейросекреты (катехоламины) транспортируются аксоплазматическим током к периферическим органам.

Аксональный транспорт.Описаны две системы аксонального транспорта – медленный, со скоростью 1-3 мм/день, и быстрый, со скоростью примерно 400 мм/день.

Аксональный транспорт поддерживает непрерывность аксона и синаптических мембран и восстанавливает белки, гликопротеины, ферменты и другие вещества, исчезающие в ходе локального расщепления, экзоцитоза в синаптическую щель и ретроградной миграции к нейрону. Все это происходит благодаря быстрому транспорту, на который не оказывают влияния процессы возбуждения. Транспорт продолжается после блокады потенциалов действия и не повышается при усиленной активности нерва. Аксональный транспорт осуществляется в обоих направлениях; центростремительный ток контролирует, по-видимому, синтез белков в нейроне и играет также роль «сигнала» для хроматолиза после аксотомии. Различные вещества, ферменты, передатчики и макромолекулы передвигаются в аксоне с разной скоростью.

Аксоплазматический транспорт можно зарегистрировать по накоплению веществ после нарушения непрерывности аксона и по наблюдению за продвижением меченых соединений после введения их в нейрон.

Белки, синтезируемые в теле клетки, синаптические медиаторные вещества и низкомолекулярные факторы спускаются по аксону к нервной терминали вместе с клеточными органеллами, в частности митохондриями. Для большинства веществ и органелл обнаружен ретроградный транспорт (по аксону к телу клетки): вирус полиомиелита, вирус герпеса, столбнячный токсин, а также ферменты – пероксидаза хрена, которая широко используется в нейроанатомии в качестве маркиратора. Ретроградный транспорт, видимо, является главным фактором регуляции синтеза белка в клетке. После перерезки аксона через несколько дней в соме начинается хроматолиз, что свидетельствует о нарушении синтеза белка. Быстрый аксонный транспорт зависит от достаточного снабжения метаболической энергии. Возможность транспорта создают микротрубочки диаметром 25 мкм, состоящие из белка тубулина, и некоторые нейрофибриллы, состоящие из белка актина, образующие транспортные нити. Транспортные нити скользят вдоль микротрубочек. При этом они взаимодействуют с выступами микротрубочек, происходит расщепление АТФ, которое и обеспечивает энергию для транспорта. Более медленно транспортируются крупные белки. Но считают, что сам транспортный механизм не является более медленным, однако вещества время от времени попадают в клеточные компартменты, которые не участвуют в транспорте. Медленный ток имеет, по-видимому, также отношение к аксональному росту. Аксоплазматический ток прекращается колхицином, что объясняется влиянием этого вещества на микротрубочки.

Физиология синапсов

Синапс (от греч. synapsis) обозначает соединение, связь – это специализированная зона контакта между нейронами или нейронами и другими возбудимыми образованиями, обеспечивающая передачу возбуждения с сохранением, изменением или исчезновением ее информационного значения. Данный термин был предложен Ч. Шеррингтоном (1897) для обозначения функционального контакта между нейронами. Справедливости ради нужно отметить, что еще в 60-х годах XIX столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить происхождение даже самых простых рефлексов.

Синапсы различают: 1) по их местоположению; 2) по способу передачи сигналов.

1) По местоположению выделяют синапсы центральные и периферические. Центральные синапсы – это синапсы, которые осуществляют контакт между нейронами в центральной нервной системе. К ним относятся аксо-аксональные синапсы, аксо-дендритические, аксо-соматические, дендро-дендритические (обнаружены гистологически; функциональное значение не вполне ясно). Центральные синапсы классифицируют также по знаку их действия – возбуждающие и тормозные. Кроме того, распространено деление синапсов по тому медиатору (передатчику), который осуществляет посредничество: адренергические синапсы, холинергические синапсы и др.

К периферическим синапсам относят нервно-мышечные, синапсы вегетативных ганглиев (синапсы, образованные преганглионарными и постганглионарными волокнами).

2) По способу передачи синапсы классифицируются как химические и электрические.

Для всех этих образований характерно наличие пресинаптической мембраны, синаптической щели (10-50 нм), постсинаптической мембраны. Пресинаптическая мембрана является мембраной пресинаптического окончания отростка нейрона (чаще всего аксона).

У человека и высших позвоночных животных наибольшее распространение получили химические синапсы. Химические синапсы в пресинаптическом окончании содержат везикулы с медиатором, химическим передатчиком. Ширина синаптической щели в среднем составляет 20 нм. На постсинаптической мембране содержатся рецепторы к данному медиатору, ферменты, разрушающие данный медиатор. Таким образом, постсинаптическая мембрана является рецепторной частью синапса, ею может быть специфически дифференцированный участок дендрита, тела нейрона и его аксона.

В электрическом синапсе не вырабатывается медиатор. Синаптическая щель несколько меньше, чем у химического синапса (2-4 нм). В синаптической щели между пре- и постсинаптической мембранами имеются белковые мостики-каналы шириной 1-2 нм, где движутся ионы и небольшие молекулы. Это способствует более низкому, чем у пресинаптической мембраны, сопротивлению постсинаптической мембраны. Поэтому возбуждение от пресинаптической мембраны к постсинаптической мембране в электрических синапсах передается электрическим путем, т.е. осуществляется эфаптическая передача. В отличие от химических синапсов, электрические синапсы отличаются большей скоростью проведения возбуждения, высокой надежностью передачи, возможностью двустороннего проведения.

Электрические синапсы обнаружены у крыс в вестибулярном ядре продолговатого мозга, в структурах дыхательного центра продолговатого мозга (при этом обсуждается их роль в механизмах автоматического ритмогенеза дыхания); у кошки электрические синапсы обнаружены между нейронами нижних олив, в структурах таламуса, между фоторецепторами сетчатки и горизонтальными клетками у рыб и др.

Но все-таки наибольшее распространение в процессе эволюции получили химические синапсы. Это обусловлено рядом свойств этих образований, которые имеют большое значение в организации деятельности нервной системы (рис. 1.4).

Рис. 1.4.

Синапс (рисунок взят из книги: Мозг / под ред. П.В. Симонова. М.: Мир, 1984)

⇐ Предыдущая3Следующая ⇒

Рекомендуемые страницы:

Функционирование нервной системы

Нормальное функционирование нервной системы зависит от передачи импульса и химических процессов в синапсе. Не менее важную роль играет создание нервных связей. Способность к обучению присутствует у людей именно благодаря возможности организма формировать новые соединения между нейронами.

аксоны и дендриты

Любое новое действие на стадии изучения требует постоянного контроля со стороны мозга. По мере его освоения образуются новые нейронные связи, со временем действие начинает выполняться автоматически (например, умение ходить).

Дендриты – это передающие волокна, составляющие примерно треть всей нервной ткани организма. Благодаря их взаимодействию с аксонами люди имеют возможность обучаться.

Аксонометрическое черчение — способ изображения на чертеже геометрических предметов при помощи параллельных проекций. Аксонометрические проекции выполняют в соответствии с ГОСТ 2.317-69.

При построении аксонометрических проекций объект относят к прямоугольной декартовой системе координат и проецируют его вместе с осями координат пучком параллельных лучей на некоторую плоскость проекций, называемую аксонометрической. Полученное изображение, нанесенное на некоторую плоскость проекций, называют аксонометрическим (или просто аксонометрией), а проекции координатных осей — аксонометрическими осями координат.

При выполнении технических чертежей, иногда помимо изображения объектов в прямоугольных проекциях, необходимо иметь и визуальные изображения. Это необходимо для того, чтобы более полно раскрыть конструктивные решения, присущие изображаемому объекту, правильно отобразить его положение в пространстве, а также оценить пропорции его частей и их размеры,

Построение аксонометрических проекций заключается в том, что геометрическую фигуру вместе с осями прямоугольных координат, к которым эта фигура отнесена в пространстве, параллельным, прямоугольным или косоугольным способом проецируют на выбранную плоскость проекций.

Содержание:

Основные правила оформления чертежей

Вес чертежи должны соответствовать государственным стандартам (ГОСТ) ЕСКД и отличаться четким и аккуратным выполнением. Чертежи выполняют на листах чертежной бумаги. Для этого необходимо иметь следующие инструменты и принадлежности: чертежную доску, рейсшину, готовальню, два угольника (один — с углами 45°, 45° и 90°, другой — 30°, 60°, 90° и длиной катетов 130—200 мм), линейку длиной 250—300 мм, набор лекал разных типов, транспортир, чертежные карандаши (для построения чертежа рекомендуются карандаши марки Т или 2Т, для обводки чертежа — марки ТМ или М), мягкую резинку для удаления карандашных линий.

При выполнении чертежей источник света должен находиться слева и сверху от чертежной доски, так как в этом случае тень от правой руки и кромки угольника не будет мешать проводить линию.

Единая система конструкторской документации

Единая система стандартов обеспечивает единство оформления и обозначения чертежей, правила учета и хранения чертежей, а также внесения в них изменений с обязательным распространением этих правил на все виды изделий и все отрасли промышленности.

Характерным для этой системы является то, что она охватывает не только графическую часть, но включает и все элементы, связанные с использованием иной технической документации.

Единая система конструкторской документации (ЕСКД) регламентирует положения относящиеся к конструкторской документации. Она включает в себя десять классификационных групп — от 0 до 9 (первая цифра после точки в обозначении стандарта, например ГОСТ 2.104-2006):

  • 0 группа — общие положения;
  • 1 группа — основные положения;
  • 2 группа — обозначение изделий и конструкторской документации;
  • 3 группа — общие правила выполнения чертежей;
  • 4 группа — правила выполнения чертежей изделий;
  • 5 группа — учет и обращение конструкторской документации;
  • 6 группа — эксплуатационная и ремонтная документация;
  • 7 группа — правила выполнения схем;
  • 8 группа — правила выполнения документов строительных и судостроительных;
  • 9 группа — прочие стандарты.

В курсе «Инженерная графика» изучают стандарты преимущественно третьей группы (например, ГОСТ 2.301-68 «Форматы», ГОСТ 2.304-81 «Шрифты чертежные», ГОСТ 2.303-2011 «Нанесение размеров и предельных отклонений», ГОСТ 2.317-2011 «Аксонометрические проекции»), выборочно — первой (например, ГОСТ 2.104-2006 «Основные надписи», ГОСТ 2.105-95 «Общие требования к текстовым документам»), четвертой (например, 2.412-81 «Правила выполнения чертежей и схем оптических изделий») и седьмой (например, ГОСТ 2.755-87 «Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения»).

Форматы

Чертежи и другие конструкторские документы всех отраслей промышленности и строительства должны выполняться на листах определенных стандартных размеров форматов.

Форматы листов чертежей определяются размерами внешней рамки, ограниченной тонкой линией. Каждый чертеж оформляется рамкой поля чертежа, проведенной с трех сторон на расстоянии 5 мм от границы формата, а с четвертой (левой) стороны — на расстоянии 20 мм для брошюровки в альбом (рис. 1.1). В правом нижнем углу каждого листа вплотную к рамке выполняется основная надпись, форма, размеры и содержание которой приведены на рис. 1.3. В верхнем углу формата располагается дополнительная графа, содержащая обозначение чертежа, повернутое на 180° к длинной стороне рамки (рис. 1.6 и 1.7). Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

ГОСТ 2.301-68 устанавливает форматы листов чертежей и других документов, предусмотренных стандартами на конструкторскую документацию всех отраслей промышленности и строительства. Площадь формата АО равна 1 Аксонометрическое черчение - примеры с решением заданий и выполнением задач а стороны относятся как Аксонометрическое черчение - примеры с решением заданий и выполнением задач одна из сторон формата будет стороной квадрата, а другая ее диагональю (рис. 1.2, а), это соотношение сторон выбрано из таких соображений:

  • при помощи циркуля и линейки просто построить прямоугольник с соотношением сторон Аксонометрическое черчение - примеры с решением заданий и выполнением задач
  • легко получить любой другой формат, опять же при помощи линейки и циркуля. Каждый меньший последующий формат получается делением пополам предыдущего формата параллельно его меньшей стороне (рис. 1.2, б и табл. 1.1) или делением большей стороны пополам.

Обозначение и размеры основных форматов чертежа приведены в табл. 1.1. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Дополнительные форматы образуются путем увеличения сторон основных форматов на величину, кратную размерам формата А4. Обозначение производного формата составляется из обозначения основного формата и его кратности согласно табл. 1.2, например, Аксонометрическое черчение - примеры с решением заданий и выполнением задач и т. Д. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Иногда допускается применение формата А5 с размерами сторон Аксонометрическое черчение - примеры с решением заданий и выполнением задачТакая необходимость может возникнуть при изображении графически простых деталей. Меньшего формата, чем А5, получить невозможно, так как не останется места для основной надписи (см. рис. 1.1).

Основные надписи

Формы, размеры и порядок заполнения основной надписи и дополнительных граф к ней в чертежах, схемах и текстовых документах устанавливает ГОСТ 2.104-2006.

Основная надпись, дополнительные графы к ней и рамки выполняют сплошными основными и сплошными тонкими линиями, а именно: тонкие линии наносятся там, где вносятся фамилии и подписи лиц, ответственных за разработку данной детали или изделия, и

графы литеры, остальные линии — основные.

Основная надпись всегда располагается в правом нижнем углу формата, вплотную к рамке (см. рис. 1.1).

Содержание, расположение и размеры граф основной надписи, дополнительных граф к ней, также размеры рамок на чертежах и схемах должны соответствовать форме 1 (рис. 1.3), а в текстовых документах должны соответствовать форме 2 (рис. 1.4) и форме 2а (рис. 1.5) указанного выше ГОСТа:

  1. наименование чертежа (начинается с существительного в единственном числе);
  2. обозначение чертежа (состоит из индекса раздела курса, номера задания, варианта, порядкового номера чертежа, например ИГО 1.22.001);
  3. обозначение материала (заполняют только на чертежах и эскизах деталей);
  4. литера чертежа (обычно на учебных чертежах используют литеру У);
  5. масса изделий (на учебных чертежах не указывается);
  6. масштаб;
  7. порядковый номер листа (на документах, состоящих из одного листа, графу не заполняют);
  8. количество листов (графу заполняют только на первом листе, если документ состоит из одного листа, указывают — /);
  9. наименование предприятия, выпустившего чертеж (на учебных чертежах указывают наименование учебного заведения и шифр группы, например Г1И СФУ гр. МТ10-12);
  10. характер работы, выполняемой лицом, подписавшим чертеж;
  11. фамилии лиц, подписавших чертеж;
  12. подписи лиц, фамилии которых указаны в графе 11;
  13. даты, когда были сделаны подписи.

Основная надпись, форма 2 — для текстовых конструкторских документов первый или заглавный лист (рис. 1.4).

Основная надпись, форма 2а — для текстовых конструкторских документов второй и последующие листы (рис. 1.5).

Для второго и последующих листов чертежей и схем допускается применять форму 2а (рис. 1.5).

На формате Л4 основную надпись размещают только вдоль короткой стороны, дополнительную графу — в левом верхнем углу вдоль короткой стороны (рис. 1.6, а).

На форматах больше А4 при расположении основной надписи вдоль длинной стороны листа дополнительная графа располагается так, как показано на рис. 1.6, 6.

На форматах больше А4 при расположении основной надписи вдоль короткой стороны листа дополнительная графа располагается, как показано на рис. 1.7.

Масштабы

Все чертежи выполняют в масштабах, утвержденных ГОСТ 2.302-68.

Масштабы изображений в чертежах, в зависимости от сложности и величины изображаемых изделий или их составных частей, а также от вида чертежа, нужно выбирать из представленного в табл. 1.3 ряда. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Масштаб, указанный в предназначенной для этого графе основной надписи чертежа, должен обозначаться по типу 1:1; 1:2; 2:1 и т. д.

Масштаб изображения, отличающийся от указанного в основной надписи, помещают справа от надписи, относящейся к изображению. Например: А (1:2), А-А (1:2).

Вес чертежи выполняют линиями различного типа и толщины, причем толщина линий зависит от величины, сложности и назначения чертежа.

ГОСТ 2.303-68 устанавливает начертания и основные назначения линий на чертежах (рис. 1.8).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Указанный стандарт устанавливает назначение и начертание девяти типов линий, это — сплошная (основная, тонкая, волнистая и тонкая с изломами), штриховая, штрихпунктирная (тонкая, утолщенная и с двумя точками) и разомкнутая линии (табл. 1.4).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Сплошная тонкая линия предназначена для построения, выносных и размерных линий, штриховки разрезов и сечений, линии контура наложенного сечения, линии-выноски, полки линий выносок и подчеркивание надписей и др. (см. табл. 1.4). Расстояние между линиями штриховки принимают от 1 до 10 мм в зависимости от величины площади штриховки.

Волнистой линией показывают линии обрыва и линии разграничения вида и разреза.

Штриховую линию применяют для изображения на чертежах линий невидимого контура.

Штрихпунктирной тонкой линией проводят осевые и центровые линии, линии сечений, являющиеся осями симметрии для наложенных или вынесенных сечений.

Штрихпунктирная тонкая линия с двумя точками применяется для изображения линий сгиба и частей изделий в крайних или промежуточных положениях, а также для изображения развертки, совмещенной с видом.

Утолщенная штрихпунктирная линия применяется для обозначения поверхности, подлежащей термической обработке или нанесению покрытий.

Длину штрихов в штриховых линиях следует выбирать в пределах от 2 до 8 мм в соответствии с толщиной линий, а расстояние между штрихами выбирают примерно 1-2 мм.

Длина штрихов в штрихпунктирных тонких линиях должна быть в пределах от 5 до 30 мм, при малых изображениях длину штрихов лучше выбирать меньшей длины. Промежутки между штрихами в этих линиях рекомендуется брать для линии с одной точкой от 3 до 5 мм, а с двумя точками примерно 4—6 мм.

Длина штрихов в штрихпунктирных утолщенных линиях должна быть в пределах от 3 до 8 мм, при малых изображениях длину штрихов рекомендуется выбирать меньшей длины. Промежутки между штрихами в этих линиях выбирают от 3 до 4 мм.

Разомкнутую линию применяют для обозначения линий разрезов и сечений (см. рис. 1.8, А-А). Длину штрихов в этих линиях выбирают в пределах от 8 до 20 мм в зависимости от величины изображения.

При выполнении чертежа необходимо руководствоваться следующими требованиями:

  • толщина линий одного типа должна быть одинаковой для всех изображений на данном чертеже, вычерченных в одном масштабе;
  • штрихи в линии должны быть приблизительно одинаковой длины;
  • штриховые и штрихпунктирные линии должны начинаться и заканчиваться штрихами, которые рекомендуется выводить за контур изображения предмета на 3-5 мм;
  • штриховые и штрихпунктирные линии должны пересекаться между собой и другими линиями чертежа штрихами;
  • если диаметр окружности в изображении менее 12 мм, то штрихпунктирные линии, применяемые в качестве центровых, следует заменять сплошными тонкими;
  • центр окружности во всех случаях должен определяться пересечен и ем штрихов.

Шрифты чертежные

ГОСТ 2.304-81 регламентирует правила написания шрифтов (букв, цифр, условных знаков). Необходимость строгого соблюдения этого ГОСТа продиктована проблемой быстрого и безошибочного распознавания надписей невооруженным глазом или вооруженным, или «читающим» устройством при изменяющихся условиях (при различной освещенности, когда наблюдатель неподвижен, а движется чертеж или наоборот). Кроме того, чертежи со временем могут изнашиваться и надписи становятся менее четкими. Ошибки при чтении размерных чисел недопустимы. Поэтому к качеству шрифта на чертежах предъявляют особые требования.

В соответствии с требованиями ГОСТ 2.304-81 шрифты, применяемые при оформлении чертежей и других технических документов всех отраслей промышленности и строительства, установлены двух типов: тип А с толщиной линии 1:14h (табл. 1.5) и тип Б с толщиной 1:10h (табл. 1.6) с наклоном под углом 75° к основанию строки (рис. 1.9) или без наклона (рис. 1.10).

Устанавливаются следующие размеры шрифта: 1,8; 2,5; 3,5; 5; 7; 10; 14; 20; 28; 40. Применение шрифта типа Л с размером 1,8 не рекомендуется и допускается только для типа Б.

Стандарт предусматривает следующие термины, обозначения и определения (рис. 1.11):

  1. Размер шрифта h — величина, определенная высотой прописных букв в миллиметрах.
  2. Высота прописных букв h измеряется перпендикулярно к основанию строки. Высота строчных букв с определяется из отношения их высоты (без отростков k) к размеру шрифта h, например с = 7/10h.
  3. Ширина буквы g, толщина линии шрифта d, расстояние между буквами а и минимальное расстояние между строками b определяются в зависимости от типа шрифта (табл. 1.5 и 1.6).

При выполнении надписей шрифтом вначале необходимо построить карандашом сетку (рис. 1.12) в виде тонких линий, а затем от руки нанести на эту сетку буквы и цифры тонкими линиями. Необходимая толщина линий букв и цифр достигается при обводке мягким карандашом.

На рис. 1.13 показано построение шрифта типа А (рис. 1.13, а) и типа Б (рис. 1.13, 6) по вспомогательной сетке.

При выполнении чертежей часто используются специальные знаки, начертание которых приведены на рис. 1.14. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

При нанесении знака Аксонометрическое черчение - примеры с решением заданий и выполнением задач перед размерным числом высота окружности знака должна быть равна 5/7h, где h — высота размерного числа, а высота наклонного штриха должна быть равна высоте размерного числа и угол наклона 75° для шрифта без наклона и 60° для шрифта с наклоном.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Примечание. Нижние горизонтальные отростки у прописных и строчных букв Ц и Щ типов А и Б делают за счет промежутков между смежными буквами, а вертикальные (также черта над И) — за счет промежутка между строками. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

При нанесении знака □ перед размерным числом высота знака должна быть равна 5/7h.

При нанесении знака R перед размерным числом высота знака должна быть равна h — высоте размерного числа.

Примеры начертания цифр и знаков чертежного шрифта представлены на рис. 1.15. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Дроби, показатели, индексы и предельные отклонения выполняют шрифтом на одну ступень меньшим, чем размер шрифта основной величины, или одинакового размера с ним (рис. 1.16). Следует десятичные знаки отделять четко выполненной запятой (в виде черты), оставляя для нее достаточный промежуток между смежными цифрами.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Применение шрифта размера, меньшего чем 3,5, при нанесении размерных чисел на чертежах, выполненных в карандаше, не допускается.

Нанесение размеров

Простановка размеров на чертеже является одним из важных элементов, поэтому необходимо познакомиться с правилами их нанесения.

Нанесение размеров на чертеже регламентирует ГОСТ 2.307-2011. Основанием для определения величины изображенного изделия и его элементов служат размерные числа, проставленные на чертеже. Общее количество размеров на чертеже должно быть минимальным, но достаточным для изготовления и контроля изделия. Требование минимальности простановки размеров обусловлено тем, что лишний размер увеличивает время чтения чертежа из-за его загруженности. Пропуск или ошибка в размерах приводят к браку при изготовлении изделия. Повторять размеры одного и того же элемента детали на изображениях не допускается.

Размеры выражают геометрические величины объектов, расстояния и углы между ними, координаты отдельных точек. Величина изображенного на чертеже изделия и его элементов (частей) определяется размерными числами, нанесенными на чертеже.

Размеры подразделяются на линейные и угловые. Линейные определяют длину, ширину, высоту, толщину, диаметр и радиус элементов детали. Угловые определяют углы между линиями и плоскостями элементов детали, а также углы между элементами.

Линейные размеры на чертежах указывают в миллиметрах, без обозначения единицы измерения. Угловые размеры указывают в градусах, минутах и секундах с обозначением единицы измерения, например: 45°, 45° 30′, 60° Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Для размерных чисел применять простые дроби не допускается, за исключением размеров в дюймах.

Размеры на чертеже наносят без учета масштаба изображения, т. е. значения размерных чисел определяют действительные размеры, которые должно иметь изготовленное изделие.

Размеры на чертежах указывают размерными числами и размерными линиями, ограничиваемыми с одного или обоих концов стрелками или засечками. Размерная линия — это отрезок, графически выражающий величину, а также ориентацию размера. Размерные линии (рис. 1.17. а) проводят параллельно тому отрезку, линейный размер которого наносят. Выносные линии, а также заменяющие их осевые, проводят перпендикулярно размерным линиям. В случаях, подобных изображенному на рис. 1.17, б, выносные линии следует проводить так, чтобы они вместе с измеряемым отрезком образовывали параллелограмм.

Размерные линии не должны являться продолжениями линий контура, центровых и выносных линий.

Размерную линию желательно наносить вне контура изображения. Размерные и выносные линии следует выполнять сплошными тонкими линиями. Необходимо избегать пересечения размерных и выносных линий.

Размерный текст обычно состоит из размерного числа, при необходимости в размерный текст могут включаться различные специальные обозначения, а также допуски. Центровые линии — это штрихпунктирные линии (рис. 1.17, б), обозначающие центр окружности или дуги. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 1.17. Расположение на чертеже размерных линий и чисел

Расстояние между контурной и размерной линией должно быть не менее 10 мм, а между размерными линиями не менее 7 мм, выносные линии должны выходить за концы стрелок или засечек на 1…5 мм (рис. 117, а).

Размерные числа наносят над размерной линией как можно ближе к ее середине, причем промежуток между размерным числом и размерной линией должен быть 0,5… 1,0 мм (рис. 1.17, а). В пределах одного чертежа размерные числа выполняют шрифтом одного размера — 3,5 или 5 мм. Предпочтительная высота размерных чисел равна 5 мм.

Если вид или разрез симметричного предмета или отдельных симметрично расположенных элементов изображают только до оси симметрии (рис. 1.18) или с обрывом, то размерные линии, относящиеся к этим элементам, проводят с обрывом, и обрыв размерной линии делают дальше оси или линии обрыва предмета.

Величину стрелки выбирают в зависимости от толщины линий видимого контура и вычерчивают их приблизительно одинаковыми на всем чертеже.

Форма, размер стрелки и примерное соотношение ее элементов показаны на рис. 1.19.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

При нанесении размера угла размерную линию проводят в виде дуги с центром в его вершине, а выносные линии — радиально (рис. 1.20).

При нанесении размера дуги окружности размерную линию проводят концентрично дуге, а выносные линии — параллельно биссектрисе угла, и над размерным числом наносят знак Аксонометрическое черчение - примеры с решением заданий и выполнением задач как показано на рис. 1.21.

При нанесении размера прямолинейного отрезка размерную линию проводят параллельно этому отрезку, а выносные линии перпендикулярно к размерным (рис. 1.22).

При изображении изделия с разрывом размерную линию не прерывают (рис. 1.23).

Если длина размерной линии недостаточна для размещения на ней стрелок, то размерную линию продолжают за выносные (или за контурные, осевые, центровые и т. д.) и стрелки наносят так, как показано на рис. 1.24. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

При недостатке места для стрелок на размерных линиях, расположенных цепочкой, стрелки допускается заменить засечками, наносимыми под углом 45° к размерным линиям (рис. 1.25. а) или четко наносимыми точками (рис. 1.25, б).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

При нанесении нескольких параллельных (рис. 1.26) или концентрических (рис. 1.27) размерных линий на небольшом расстоянии друг от друга размерные числа над ними рекомендуется располагать в шахматном порядке.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Размерные числа линейных размеров при различных наклонах размерных линий располагают так, как показано на рис. 1.28. Причем все размерные числа и надписи должны читаться со стороны основной надписи или при повороте формата вправо. Данное требование продиктовано тем, что изображения в основном располагают относительно основной надписи так, как располагается деталь на станке. Если необходимо указать размер в заштрихованной зоне (рис. 1.28), то размерное число наносят на полке линии-выноски.

Для указания размера угла размерная линия проводится в виде дуги с центром в его вершине, а выносные линии — радиально. Знаки градусов наносят на уровне высоты цифры размерного числа (рис. 1.29). Аксонометрическое черчение - примеры с решением заданий и выполнением задач

В зоне, расположенной выше горизонтальной осевой линии, размерные числа угловых размеров наносятся над размерными линиями со стороны их выпуклости; в зоне, расположенной ниже горизонтальной осевой линии, со стороны вогнутости размерных линий. Размерное число, расположенное в отмеченной штрихами зоне, должно располагаться на горизонтальной полке линии выноски (размеры 30° и 40°) (рис. 1.29). Аксонометрическое черчение - примеры с решением заданий и выполнением задач

При указании размера диаметра всегда перед размерным числом наносят знак Аксонометрическое черчение - примеры с решением заданий и выполнением задач (рис, 1.30, 1.31), высота которого равна высоте цифр размерных чисел. Знак представляет собой окружность, пересеченную косой чертой под углом 75° к размерной линии для шрифта без наклона и 60° для шрифта с наклоном, как показано на рис. 1.15.

Если для написания размерного числа над размерной линией недостаточно места, то размеры наносят так, как показано на рис, 1.30. Если недостаточно места для нанесения стрелок, то размеры наносят так, как показано на рис. 1.3 1.

Способ нанесения размерного числа при различных положениях размерных линий (стрелок) на чертеже определяется наибольшим удобством чтения (рис. 1.30, 1.31).

Размерные числа нельзя разделять или пересекать какими бы то ни было линиями чертежа. Нс допускается разрывать линию контура для нанесения размерного числа и наносить размерные числа в местах пересечения размерных, осевых или центровых линий.

В месте нанесения размерного числа осевые, центровые линии (рис. 1.32, л) и линии штриховки (рис. 1.32, 6) прерывают.

Размеры, относящиеся к одному и тому же конструктивному элементу (пазу, выступу, отверстию и т. п.), рекомендуется группировать в одном месте, располагая их на том изображении, на котором геометрическая форма данного элемента показана наиболее полно, более наглядно (рис. 1.33). Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

При нанесении размера радиуса перед размерным числом помещают прописную букву R (рис. 1.34).

Если при нанесении размера радиуса дуги окружности необходимо указать размер, определяющий положение ее центра, то центр изображают в виде пересечения центровых или выносных линий. При большой величине радиуса центр допускается приближать к дуге, в этом случае размерную линию можно приближать к дуге, а размерную линию радиуса показывать с изломом под углом 90° (рис. 1.34, а).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Если не требуется указывать размеры, определяющие положение центра дуги окружности, то размерную линию радиуса допускается нс доводить до центра и смещать ее относительно центра (рис. 1.34, б).

При проведении нескольких радиусов из одного центра размерные линии любых двух радиусов не располагают на одной прямой (рис. 1.34.г)•

При совпадении центров нескольких радиусов их размерные линии допускается не доводить до центра, кроме крайних (рис. 1.34, г).

Размеры радиусов наружных скруглений наносят так, как показано на рис. 1.35, а. Размеры внутренних скруглений показаны на рис. 1.35, б.

Радиусы скруглений, размер которых в масштабе чертежа 1 мм и менее, на чертеже не изображают, а размеры наносят так, как показано на рис. 1.36.

Способ нанесения размерных чисел при различных положениях размерных линий (стрелок) на чертеже определяется наибольшим удобством чтения.

Размеры одинаковых радиусов допускается указывать на общей полке (рис. 1.37).

Перед размерным числом диаметра (рис. 1.38) или радиуса (рис. 1.39) сферической поверхности (или ее части) наносят соответственно знак Аксонометрическое черчение - примеры с решением заданий и выполнением задач или букву R без надписи «Сфера» (рис. 1.38, а% 1.39, а). Чтобы на чертеже было легче отличить сферическую поверхность от других поверхностей (например от цилиндрической), перед размерным числом диаметра или радиуса сферической поверхности допускается наносить знак О (рис. 1.38, б, 1,39, 6) или слово «Сфера» (рис. 1.38, в, 1.39, в). Диаметр знака сферы равен высоте размерных чисел на чертеже. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Размеры элементов квадратной формы наносят так, как показано на рис. 1.40, причем знак квадрата должен выглядеть как квадрат (не параллелограмм, не прямоугольник). Высота знака Аксонометрическое черчение - примеры с решением заданий и выполнением задач (квадрата) должна быть равна 5/7 высоты размерных чисел на чертеже.

Перед размерными числами, характеризующими конусность, наносят специальный знак Аксонометрическое черчение - примеры с решением заданий и выполнением задач, острый угол которого должен быть направлен в сторону вершины конуса (рис. 1.41).

Знак конуса и конусность в виде соотношения следует наносить над основной линией или на полке линии-выноски (рис. 1.41). Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Примечание. При выполнении чертежей на компьютере знак □ проставляется автоматически, равным высоте размерных чисел (рис. 1.40). Размеры фасок под углом 45° наносят так, как показано на рис. 1.42.

Если деталь имеет несколько одинаковых фасок на цилиндрических (или конических) поверхностях разного диаметра, то размер фаски наносят только один раз, с указанием их количества под размерной линией (рис. 1.42, 6). Когда деталь имеет две симметрично расположенные одинаковые фаски на одинаковых диаметрах, то размер фаски наносят один раз без указания их количества (рис. 1.42, а).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Размеры фасок под другими углами указывают по общим правилам — линейными угловыми размерами или двумя линейными размерами. Нанесение размеров углов показано на рис. 1.43 и 1.44.

При расположении элементов предмета (отверстий, пазов, зубьев и т. п.) на одной оси или на одной окружности размеры, определяющие взаимное расположение, наносят следующим образом:

а) задание размеров между смежными элементами цепочкой (рис.1.45); Аксонометрическое черчение - примеры с решением заданий и выполнением задач

б) задание линейных размеров от общей базы (рис. 1.46);

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

в) задание угловых размеров от общей базы (рис. 1.47);

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

г) заданием размеров нескольких групп элементов от нескольких общих баз (рис. 1.48).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Размеры на чертежах не наносят в виде замкнутой цепи, за исключением случаев, когда один из элементов указывается как справочный (рис. 1.49). Справочными называют размеры, нанесенные на чертеже, но не подвергающиеся контролю. Справочные размеры на чертеже отмечаются знаком *.

Размеры, определяющие положение симметрично расположенных элементов у симметричных изделий, наносят так, как показано на рис. 1.50, 1.51. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Размеры нескольких одинаковых элементов изделия, как правило, наносят один раз с указанием на полке линии-выноски количества этих элементов (рис. 1.52. а, б, 1.53). Полку линии-выноски необходимо вычерчивать горизонтально, параллельно основной надписи.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

При нанесении размеров, определяющих расстояние между равномерно расположенными одинаковыми элементами (например отверстиями), рекомендуется вместо размерных цепей наносить размер между соседними элементами и размер между крайними элементами в виде произведения количества промежутков между элементами на размер промежутка линейных размеров, как показано на рис. 1.53, угловых размеров на рис. 1.54.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

При нанесении размеров одинаковых элементов, например отверстий (рис. 1.55, рис. 1.56), расположенных в разных частях изделия:

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

  • а) эти элементы рассматривают как один элемент, если между ними нет промежутка (рис. 1.55, а) или они соединены тонкими сплошными линиями (рис. 1.55, б);
  • б) рассматривают как разные элементы, если между ними есть промежуток и они не соединены тонкими сплошными линиями (рис. 1.56). В этом случае указывают полное количество элементов.

При изображении детали в одной проекции (рис. 1.57) размер ее толщины наносят так, как показано на рис. 1.57, а, длины — на рис. 1.57, 6. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Размер детали или отверстия прямоугольного сечения могут быть указанны на полке линии-выноски размерами сторон через знак умножения, как показано на рис. 1.58. При этом на первом месте должен быть указан размер той стороны прямоугольника, от которой проводиться линия-выноска.

Допускается не наносить размеры радиуса дуги окружности сопрягающихся параллельных линий (рис. 1.59).

На чертежах необходимо проставлять габаритные размеры. Габаритными размерами называют размеры, определяющие предельные величины внешних очертаний изделий. К габаритным размерам относятся размеры длины, ширины, высоты изделия. Габаритные размеры всегда больше других, поэтому их на чертеже располагают дальше от изображения, чем остальные.

Обозначения графические материалов и правила их нанесения на чертежах

Для большей наглядности при выполнении и чтении чертежей изображение в сечениях покрывают штриховкой. Графическое обозначение материалов в сечениях должно способствовать легкому различению деталей, а также показывать вид материала детали, не затрудняя чтение чертежа.

Правила графического обозначения и нанесения материалов в сечениях на чертежах устанавливает ГОСТ 2.306-68.

Графические обозначения материалов в сечениях в зависимости от вида материалов должны соответствовать приведенным в табл. 1.7. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Допускается применять дополнительные обозначения материалов, не предусмотренных указанным стандартом, но в этом случае необходимо их пояснение на чертеже.

Нанесение штриховки на чертежах должны выполняться по правилам, предусмотренным стандартом.

Наклонные параллельные линии штриховки должны проводиться под углом 45° к линиям рамки чертежа (рис. 1.60), или к линии контура изображения (рис. 1.61), или к его оси (рис. 1.62). Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Если линии штриховки, приведенные к линии рамки чертежа под углом 45°, совпадают с линиями контура или осевыми линиями, то вместо угла 45°следует брать угол 30° (рис. 1.63, а) или угол 60° (рис. 1.63,б)

Линии штриховки должны наноситься с наклоном влево или вправо, но, как правило, в одну и ту же сторону на всех сечениях, относящихся к одной и той же детали, независимо от количества листов, на которых эти сечения расположены.

Расстояние между параллельными прямыми линиями штриховки (частота) должно быть одинаковым для всех выполняемых в одном и том же масштабе сечений данной детали и выбираться в зависимости от площади штриховки и необходимости разнообразить штриховку смежных сечений. Указанное расстояние должно быть от 1 до 10 мм (рис. 1.61) в зависимости от площади штриховки и необходимости разнообразить штриховку смежных сечений. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Узкие и длинные площади сечения (например, штампованных и других подобных деталей), ширина которых на чертеже от 2 до 4 мм, рекомендуется штриховать полностью только на концах и у контуров отверстий, а остальную площадь сечения — небольшими участками в нескольких местах (рис. 1.64), а в случаях штриховки стекла (рис. 1.65) линии штриховки следует наносить с наклоном 15-20° к линиям большей стороны контура сечения. Штриховка в этих случаях выполняется от руки.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Узкие площади сечений, ширина которых на чертеже менее 2 мм, допускается показывать зачерненными с оставлением просветов между смежными сечениями не менее 0,8 мм (примерно равными толщине основной линии S), как показано на рис, 1.66.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 1.66. Штриховка узких площадей, толщиной менее 2 мм Для смежных сечений двух деталей следует брать наклон линий штриховки для одного сечения вправо, для другого — влево (встречная штриховка).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

В смежных сечениях со штриховкой одинакового наклона и направления следует изменять расстояние между линиями штриховки (рис. 1.67) или сдвигать эти линии в одном сечении по отношению к другому, не изменяя угла их наклона (рис. 1.68).

При штриховке в клетку для смежных сечений двух деталей расстояние между линиями штриховки в каждом сечении должно быть разным (рис. 1.69).

При больших площадях сечений, а также при указании профиля грунта допускается наносить обозначение лишь у контура сечения узкой полоской равномерной ширины (рис. 1.70).

Аксонометрические проекции

При выполнении технических чертежей иногда наряду с изображением предметов в прямоугольных проекциях следует иметь и наглядные изображения. Это необходимо для обеспечения возможности более полно выявить конструктивные решения, заложенные в изображаемом предмете, правильно представить положение его в пространстве, оценить пропорции частей, их размеры,

Наглядные изображения на некоторых чертежах могут располагаться и независимо от прямоугольных изображений. Например, при изображении схем электроснабжения и теплоснабжения зданий и сооружений.

Существуют различные способы построения наглядных изображений. Сюда относятся аксонометрические аффинные и векторные проекции, а также линейная перспектива. Рассмотрим аксонометрические проекции.

Аксонометрические проекции выполняют в соответствии с ГОСТ 2.317-2011. При построении аксонометрических проекций объект относят к прямоугольной декартовой системе координат и проецируют его вместе с осями координат пучком параллельных лучей на некоторую плоскость проекций, называемую аксонометрической. Полученное изображение, нанесенное на некоторую плоскость проекций, называют аксонометрическим (или просто аксонометрией), а проекции координатных осей — аксонометрическими осями координат.

Проекции прямых, параллельных в действительности натуральным осям координат, параллельны соответствующим аксонометрическим. Именно в использовании этого свойства параллельных проекций и заключается простота построения параллельной аксонометрии.

Здесь возможны три случая, когда все три оси координат составляют с аксонометрической плоскостью проекций некоторые острые углы (равные или неравные) и когда одна или две оси параллельны. В первом случае применяется только прямоугольное проецирование (прямоугольная или ортогональная аксонометрия), а во втором и третьем -только косоугольное проецирование (косоугольная аксонометрия). На практике используют несколько видов как прямоугольной, так и косоугольной аксонометрии с наиболее простыми соотношениями между показателями искажений.

Обратимость аксонометрического чертежа (возможность определения натуральных размеров изображенного объекта) обеспечивается указанием на нем показателей искажения (или наличием условий для их определения) и возможностью построения аксонометрической координатной ломаной (рис. 4.5) любой точки поверхности, принадлежащей изображенному объекту.

Разрезы на аксонометрических проекциях выполняют, как правило, путем сечения объекта координатными плоскостями. При этом ребра жесткости, спицы колес и другие тонкостенные элементы штрихуют (рис. 4.1). Аксонометрическое черчение - примеры с решением заданий и выполнением задач

ГОСТ 2.317-2011 рекомендует к применению на чертежах всех отраслей промышленности и строительства пять видов аксонометрий: две ортогональных (прямоугольных) — изометрическую и диметриче-скую и три косоугольных — фронтальную и горизонтальную изометрические и фронтальную диметрическую. В машиностроении в основном применяют ортогональные: изометрическую (она является единствено возможной) и диметрическую проекции.

Прямоугольные аксонометрические проекции, изометрическая и диметрическая, дают более наглядные изображения и в связи с этим применяются на практике наиболее часто.

Прямоугольная изометрическая проекция

Углы между осями х, у и z равны между собой, линейные размеры предмета, параллельные этим осям, искажаются одинаково (рис. 4.2). Аксонометрическое черчение - примеры с решением заданий и выполнением задач

При построении аксонометрии дробные показатели искажений усложняют расчет размеров, для его упрощения пользуются приведёнными показателями искажений: в изомстрии все три показателя увеличивают в 1,22 раза (1:0,82 Аксонометрическое черчение - примеры с решением заданий и выполнением задач1,22), получая 1 (рис. 4.2), так, длина всех ребер куба на изображении одинаковая (рис. 4.3), равная 0,82 действительной длины. Для упрощения построений (как сказано выше) отрезки, параллельные аксонометрическим осям, откладываются действительной длины, без искажения.

Известно, что любая линия или поверхность есть множество точек. Поэтому рассмотрение построения изометрической проекции рационально начать с построения точки.

Точка А задана своими проекциями Аксонометрическое черчение - примеры с решением заданий и выполнением задач (рис. 4.4) с координатами х, у, z.

Построение изометрической проекции точки (рис. 4.5). Сначала строим оси, как показано на рис. 4.2. Откладываем от точки О (начала координат) последовательно отрезки на одной из осей и параллельные двум другим осям, равные величинам координат, мы всегда придем в точку А. Порядок построения координатной ломаной может быть любым из шести, представленных на рис. 4.5. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Коэффициент искажения в изометрии Аксонометрическое черчение - примеры с решением заданий и выполнением задачАксонометрическое черчение - примеры с решением заданий и выполнением задач принимаем равным единице Аксонометрическое черчение - примеры с решением заданий и выполнением задач, поэтому координаты точки А на каждом примере (рис. 4.5) откладываем равными координатам x, у, z (рис. 4.4)

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Линии штриховки сечении наносят параллельно одной из диагоналей проекции квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям («спроецированная» штриховка, рис. 4.6).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Если основание многогранника — правильный многоугольник (например треугольник), то построенные прямоугольные изометрические проекции многогранника выполняют просто, а именно: построение вершин основания по координатам упрощается, достаточно провести одну из осей координат через центр основания. На рис 4,7 оси х, у, z проведены через центры правильных треугольников призмы.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построив изометрические проекции треугольников — оснований призмы (рис. 4.7), из их вершин проводим прямые, параллельные соответственно осям х, у или z. На этих прямых от вершин основания откладываем высоту призмы и получаем изометрию вершин других основания призмы. Соединив эти точки прямыми, получим изометрические проекции призмы.

Построение прямоугольной изометрической проекции правильной шестиугольной призмы показано на рис. 4.8.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Для построения необходимо провести оси прямоугольной изометрической проекции так (рис. 4,8, б), чтобы изображение призмы не вышло за пределы выбранного формата чертежа. И далее: построить прямоугольную изометрическую проекцию дальнего основания призмы 123456; провести из построенных точек 1, 2, 2, 4, 5, 6 прямые линии параллельно оси у и отложить на них ординаты вершин ближнего основания призмы, равные длине ее боковых ребер Аксонометрическое черчение - примеры с решением заданий и выполнением задач (рис. 4.8, а).

Соединить между собой полученные на прямых, параллельных оси у , точки так, чтобы точки дальнего и ближнего пятиугольников, расположенных в основаниях призмы, были параллельны между собой. Определяем видимость ребер призмы и ее граней, исходя из того, что ближнее основание и крайние ребра (контур изображения) видимы (рис. 4.8, б).

Прямоугольная изометрическая проекция окружности. Если построить изометрическую проекцию куба, в грани которого вписаны окружности диаметра D (рис. 4.9, а), то квадратные грани куба будут изображаться в виде ромбов, а окружности — в виде эллипсов (рис. 4.9, 6). Малая ось C’D’ каждого эллипса всегда должна быть перпендикулярна большой оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач Рис. 4.9. Прямоугольная изометрическая проекция окружности

Если окружность расположена в плоскости, параллельной горизонтальной плоскости, то большая ось А’В’ должна быть горизонтальной, а малая ось C’D’ — вертикальной (рис. 4.9, 6). Если окружность расположена в плоскости, параллельной фронтальной плоскости, то большая ось эллипса должна быть проведена под углом 90° к оси у.

При расположении окружности в плоскости, параллельной профильной плоскости, большая ось эллипса располагается под углом 90° к оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Большие оси эллипсов всегда перпендикулярны соответствующим осям, а малые — им параллельны.

При построении изометрической проекции окружности без сокращения по осям х, у и z длина большой оси эллипса берется равной 1,22 диаметра D изображаемой окружности, а длина малой оси эллипса -0,71D (рис. 4.10).

На рис. 4,11, 4.13 и 4.15 показаны поверхности вращения, выполненные в изометрии с овалами, расположенными параллельно горизонтальной плоскости проекций (рис. 4.11), фронтальной плоскости проекций (рис. 4.13), профильной плоскости проекций (рис. 4.15). Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 4.10. Построение изометрической проекции окружности без сокращения

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 4.11. Поверхность вращения, выполненная в изометрии с овалами, расположенными параллельно горизонтальной плоскости проекций

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 4.12. Построение изометрического овала в плоскости, параллельной горизонтальной плоскости проекций

В учебных чертежах для упрощения построения изометрических проекций окружности вместо эллипсов рекомендуется применять овалы, очерченные дугами окружностей. Упрощенный способ построения изометрических овалов приведен на рис. 4.12, 4.14, 4.16.

Для построения овала в плоскости, параллельной горизонтальной плоскости проекций (рис. 4.12), проводим вертикальную и горизонтальную оси овала, оси x и у (рис. 4,2).

Из точки пересечения осей О проводим вспомогательную окружность диаметром Аксонометрическое черчение - примеры с решением заданий и выполнением задач равным действительной величине диаметра изображаемой окружности, и находим точки n — точки пересечения этой окружности с аксонометрическими осями х и у. Из точек т пересечения вспомогательной окружности с осью z, как из центров радиусом Аксонометрическое черчение - примеры с решением заданий и выполнением задач, проводим две дуги — Аксонометрическое черчение - примеры с решением заданий и выполнением задач окружности, принадлежащие овалу.

Из центра О радиусом ОС, равным половине малой оси овала, находим на большой оси овала АВ точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач. Из этих точек радиусом Аксонометрическое черчение - примеры с решением заданий и выполнением задач проводим две дуги. Точки 1, 2, 3 и 4 сопряжений дуг радиусов R и Аксонометрическое черчение - примеры с решением заданий и выполнением задач находим, соединяя точки m с точками Аксонометрическое черчение - примеры с решением заданий и выполнением задач и продолжая прямые до пересечения с дугами Аксонометрическое черчение - примеры с решением заданий и выполнением задач

На рис. 4.14 показано упрощенное построение изометрической проекции окружности, расположенной в плоскости, параллельной фронтальной плоскости проекций. Построение аналогично построению изометрического овала, расположенного в плоскости, параллельной горизонтальной плоскости проекций, разница лишь в том, что большую ось овала АВ располагают перпендикулярно малой оси CD — принадлежащей оси у.

На рис. 4.16 показано упрощенное построение изометрической проекции окружности, расположенной в плоскости, параллельной профильной плоскости проекций. Построение аналогично построению изометрического овала, расположенного в плоскости, параллельной профильной плоскости проекций, разница лишь в том, что большую ось овала АВ располагают перпендикулярно малой оси CD — принадлежащей оси х. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

На рис. 4.17 приведен пример построения овалов на изометрии детали с расположением окружностей в плоскостях, параллельных горизонтальной, фронтальной и профильной плоскостям проекций. Построение аксонометрической проекции детали следует начинать с изображения на чертеже аксонометрических осей. Целесообразно за начало координат принимать центр симметрии, а за оси координат — оси симметрии детали. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

При построении аксонометрии рекомендуется мысленно разделить деталь на простейшие геометрические тела (цилиндр, конус, призма, пирамида и т. п.). После изображения аксонометрических проекций составных элементов предмета строятся конструктивные скругления в местах их соединения.

Линии, изображающие проекции предмета, параллельны одноименным аксонометрическим осям, поэтому при построении аксонометрических проекций удобно использовать прямые, параллельные аксонометрическим осям.

Как и на комплексном чертеже, полые детали в аксонометрии рекомендуется выполнять с разрезом (рис. 4.18).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Если окружность неполная, то для ее изображения вычерчивают тонкой линией полный овал или эллипс, а затем обводят нужную часть овала (рис. 4,18).

Прямоугольная диметрическая проекция

В прямоугольной диметрии ось z расположена вертикально; ось х — под углом 7° 10′, а ось у — под углом 41°25′ к горизонтальной прямой (рис. 4.19). Все отрезки прямых линий геометрического объекта, которые были параллельны осям х, у и z на комплексном чертеже, останутся параллельными соответствующим осям и в диметрической проекции. Длины рсбер куба на изображении отложенных в направлении осей х и z, сокращаются до 0,94 действительной длины, а в направлении оси у — до 0,47 действительной длины (рис. 4.20).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построение диметрической проекции точки (рис. 4.21). Сначала строим оси, как показано на рис. 4,19. Откладывая от точки О (начала координат) последовательно отрезки на одной из осей и параллельные двум другим осям, получим точку А.

При построении прямоугольной диметрии координатной ломаной линии следует учитывать, что коэффициент искажения по координатным осям x и z (рис. 4.20) Аксонометрическое черчение - примеры с решением заданий и выполнением задач принимаем равным единице Аксонометрическое черчение - примеры с решением заданий и выполнением задач а по оси у коэффициент искажения Аксонометрическое черчение - примеры с решением заданий и выполнением задач принимаем равным 0,5Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Линии штриховки сечений в прямоугольной диметрической проекции наносят (рис. 4.22) параллельно одной из диагоналей проекции квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям («спроецированная» штриховка). Аксонометрическое черчение - примеры с решением заданий и выполнением задач

На рис. 4,23 показано изображение трехгранной призмы в прямоугольной диметрии. Если ребра призмы параллельны оси х или z, то размер высоты не меняется, но искажается форма основания. При расположении ребер параллельно оси у высота призмы сокращается вдвое. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Прямоугольная диметрическая проекция окружности. Если построить диметрическую проекцию куба, в грани которого вписаны окружности диаметра D’ (рис. 4.24, а), то квадратные грани куба будут изображаться в виде параллелограммов, а окружности в виде эллипсов (рис. 4.24, 6). Для построения димстрической проекции окружности (эллипса), расположенной в плоскости, паралельной фронтальной плоскости проекций, надо разделить половину большой диагонали ромба на 10 равных частей. Эллипс должен пройти через точку 3. Проводя через полученную точку 3 две прямые, параллельные осям x и z, на пересечении этих прямых с малой диагональю параллелограмма получим еще две точки 5,принадлежащие эллипсу. Далее, проводя прямые, параллельные осям до пересечения с диагоналями параллелограммов, получаем точки 3 на остальных гранях куба.

Кроме точек 3, имеются еще четыре точки, через которые проходит эллипс. Эти точки расположены на серединах сторон параллелограммов (например, точка n). Найденные точки эллипсов соединяют кривой по лекалу. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Окружности в прямоугольной димстрической проекции изображаются в виде эллипсов. Большая ось эллипсов во всех случаях равна 1,06Аксонометрическое черчение - примеры с решением заданий и выполнением задач где Аксонометрическое черчение - примеры с решением заданий и выполнением задач — диаметр окружности. Малые оси эллипсов, расположенных параллельно горизонтальной и профильной плоскостям проекций, равны 0,35Аксонометрическое черчение - примеры с решением заданий и выполнением задач, а параллельно фронтальной плоскости проекций — 0,95Аксонометрическое черчение - примеры с решением заданий и выполнением задач (рис. 4.25). Большие оси эллипсов всегда перпендикулярны соответствующим осям, а малые — им параллельны.

На рис. 4.26, 4.28 и 4.30 показаны поверхности вращения, выполненные в диметрии с овалами, расположенными параллельно горизонтальной плоскости проекций (рис. 4.26), фронтальной плоскости проекций (рис. 4.28), профильной плоскости проекций (рис. 4.30). Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

В учебных чертежах для упрощения построения диметрических проекций окружности вместо эллипсов рекомендуется применять овалы, очерченные дугами окружностей. Упрощенный способ построения диметрических овалов приведен на рис. 4,27, 4,29, 4,3 1.

Для построения димстрического овала в плоскости, параллельной горизонтальной плоскости проекций (рис. 4.27), через точку О проводим оси x и z, как показано на рис. 4.18, а также большую ось овала АВ проводим перпендикулярно малой оси CD, которая принадлежит оси z. Из центра С, диаметром Аксонометрическое черчение - примеры с решением заданий и выполнением задач равным действительной величине диаметра изображаемой окружности, проводим вспомогательную окружность и на оси x получаем точки 1 и 2.Симметричным переносом относительно большой оси овала А В получаем точки 3 и 4.

На оси z, вверх и вниз от центра О откладываем отрезки, равные диаметру вспомогательной окружности Аксонометрическое черчение - примеры с решением заданий и выполнением задач и получаем точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач -центры радиусов R. Соединив полученные токи Аксонометрическое черчение - примеры с решением заданий и выполнением задач с точками 1 и 2 соответственно, получим точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач — центры радиусов Аксонометрическое черчение - примеры с решением заданий и выполнением задач. Из центров Аксонометрическое черчение - примеры с решением заданий и выполнением задач проводим дуги 1 4 и 3 2 радиусом R. Из центров Аксонометрическое черчение - примеры с решением заданий и выполнением задачпроводим дуги 1 3 и 2 4 радиусом Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Для построения овала в плоскости, параллельной фронтальной плоскости проекций (рис. 4.29), проводим оси овала х и z так, как показано на рис. 4.17. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач Из точки пересечения осей 0 проводим вспомогательную окружность диаметром Аксонометрическое черчение - примеры с решением заданий и выполнением задач равным действительной величине диаметра изображаемой окружности, и находим точки 1, 2, 3, 4 — точки пересечения этой окружности с аксонометрическими осями х и .z. Из точек 1 и 3 по направлению стрелок проводим горизонтальные линии до пересечения с осями АВ и CD и получим точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач Из центров Аксонометрическое черчение - примеры с решением заданий и выполнением задач проводим дуги 1 2 и 3 4 радиусом R. Из центровАксонометрическое черчение - примеры с решением заданий и выполнением задач проводим дуги 1 4 и 2 3 радиусомАксонометрическое черчение - примеры с решением заданий и выполнением задач

На рис. 4.31 показано упрощенное построение диметрической проекции окружности, расположенного в плоскости, параллельной профильной плоскости проекций. Построение аналогично построению диметрического овала, расположенного в плоскости, параллельной горизонтальной плоскости проекций, разница лишь в том, что большую ось овала AВ проводим перпендикулярно малой оси CD — принадлежащей оси х.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

На рис. 4.32 приведен пример построения прямоугольной диметрической проекции детали.

Построение аксонометрических проекций

Построение аксонометрических проекций начинают с проведения аксонометрических осей.

Положение осей

Оси фронтальной ди-метрической проекции располагают, как показано на рис. 85, а: ось х — горизонтально, ось z — вертикально, ось у -под углом 45° к горизонтальной линии.

Угол 45° можно построить при помощи чертежного угольника с углами 45, 45 и 90°, как показано на рис. 85, б.

Положение осей изометрической проекции показано на рис. 85, г. Оси х и у располагают под углом 30° к горизонтальной линии (угол 120° между осями). Построение осей удобно проводить при помощи угольника с углами 30, 60 и 90° (рис. 85, д).

Чтобы построить оси изометрической проекции с помощью циркуля, надо провести ось z, описать из точки О дугу произвольного радиуса; не меняя раствора циркуля, из точки пересечения дуги и оси z сделать засечки на дуге, соединить полученные точки с точкой О.

При построении фронтальной диметрической проекции по осям х и z (и параллельно им) откладывают действительные размеры; по оси у (и параллельно ей) размеры сокращают в 2 раза, отсюда и название «диметрия», что по-гречески означает «двойное измерение».

При построении изометрической проекции по осям х, у, z и параллельно им откладывают действительные размеры предмета, отсюда и название «изометрия», что по-гречески означает «равные измерения».

На рис. 85, в и е показано построение аксонометрических осей на бумаге, разлинованной в клетку. В этом случае, чтобы получить угол 45°, проводят диагонали в квадратных клетках (рис. 85, в). Наклон оси в 30° (рис. 85, г) получается при соотношении длин отрезков 3 : 5 (3 и 5 клеток). Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построение фронтальной диметрической и изометрической проекций

Построить фронтальную диметрическую и изометрическую проекции детали, три вида которой приведены на рис. 86. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Порядок построения проекций следующий (рис. 87):

  1. Проводят оси. Строят переднюю грань детали, откладывая действительные величины высоты — вдоль оси z, длины — вдоль оси х (рис. 87, а).
  2. Из вершин полученной фигуры параллельно оси v проводят ребра, уходящие вдаль. Вдоль них откладывают толщину детали: для фронтальной диметрической проекции — сокращенную в 2 раза; для изометрии -действительную (рис. 87, б).
  3. Через полученные точки проводят прямые, параллельные ребрам передней грани (рис. 87, в).
  4. Удаляют лишние линии, обводят видимый контур и наносят размеры (рис. 87, г).

Сравните левую и правую колонки на рис. 87. Что общего и в чем различие данных на них построений? Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 87. Способ построения аксонометрических проекций

Из сопоставления этих рисунков и приведенного к ним текста можно сделать вывод о том, что порядок построения фронтальной диметрической и изометрической проекций в общем одинаков. Разница заключается в расположении осей и длине отрезков, откладываемых вдоль оси у.

В ряде случаев построение аксонометрических проекций удобнее начинать с построения фигуры основания. Поэтому рассмотрим, как изображают в аксонометрии плоские геометрические фигуры, расположенные горизонтально.

Построение аксонометрической проекции квадрата показано на рис. 88, а и б. Вдоль оси х откладывают сторону квадрата а, вдоль оси у — половину стороны а/2 для фронтальной диметрической проекции и сторону а для изометрической проекции. Концы отрезков соединяют прямыми.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построение аксонометрической проекции треугольника показано на рис. 89, а и б.

Симметрично точке О (началу осей координат) по оси х откладывают половину стороны треугольника а/2, а по оси у — его высоту h (для фронтальной диметрической проекции половину высоты h/2). Полученные точки соединяют отрезками прямых.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

По оси х вправо и влево от точки О откладывают отрезки, равные стороне шестиугольника. По оси у симметрично точке О откладывают отрезки s/2, равные половине расстояния между противоположными сторонами шестиугольника (для фронтальной диметрической проекции эти отрезки уменьшают вдвое). От точек m и п, полученных на оси у, проводят вправо и влево параллельно оси х отрезки, равные половине стороны шестиугольника. Полученные точки соединяют отрезками прямых.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построение плоских фигур в аксонометрических проекциях

Государственный стандарт устанавливает несколько видов аксонометрических проекций. Для построения наиболее наглядных изображений применяется прямоугольная изометрическая проекция (кратко — изометрия, от греч изо — равный, одинаковый). Положение аксонометрических осей этой проекции приведено на рисунке 1, а. Как видно из чертежа, оси проекции в изометрии располагаются под углом 120° друг к другу. При построении фигур размеры отрезков по осям Аксонометрическое черчение - примеры с решением заданий и выполнением задачоткладывают без изменения, т. е. действительные.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

В том случае, когда действительные размеры берут только по двум осям (х°, z°), проекцию называют диметрической (от греч. ди — дважды).

Положение осей диметрической проекции дано на рисунке 1, б.

Аксонометрические проекции многоугольников

Построение аксонометрических проекций начинают с проведения осей. Параллельно им откладывают размеры отрезков.

Рассмотрим построение аксонометрических проекций плоских геометрических фигур, расположенных в горизонтальной плоскости. Построения даны в изометрической проекции.

Треугольник

Симметрично точке 0° по оси х° откладывают отрезки С°А° и 0°Е°, равные половине стороны треугольника, а по оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач — его высоту 0°С°. Полученные точки Аксонометрическое черчение - примеры с решением заданий и выполнением задачи С° соединяют отрезками прямых.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Квадрат

По оси х° от точки 0° откладывают отрезок а, равный стороне квадрата, вдоль оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач— также отрезок а. Затем проводят отрезки, параллельные отложенным.

Шестиугольник

По оси х° вправо и влево от точки 0° откладывают отрезки, равные стороне шестиугольника. По оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач симметрично точке 0° откладывают отрезки, равные половине расстояния L между противоположными сторонами шестиугольника, т. е. L/2. Через точки, полученные на оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач, проводят вправо и влево параллельно оси х° отрезки, равные половине стороны шестиугольника. Полученные точки соединяют отрезками прямых.

Если контур фигуры сложный, то при построении аксонометрической проекции эту фигуру удобно заключить в квадрат, прямоугольник и пр.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическая проекция окружности

В аксонометрической проекции окружность в общем случае проецируется в кривую, которую называют эллипсом. Эллипс — замкнутая плоская кривая. Ее строят с помощью лекал. Поскольку строить эллипсы трудно, при изображении окружности в аксонометрии их разрешается заменять овалами. Овал — кривая, очерченная дугами окружности.

Рассмотрим построение овала, представляющего изометрическую проекцию окружности. Овал удобно строить, вписывая его в ромб, который является изометрической проекцией квадрата. Построение выполняют в следующем порядке:

  1. Строят ромб, сторона которого равна диаметру изображаемой окружности. Для этого через точку 0° проводят оси х° и Аксонометрическое черчение - примеры с решением заданий и выполнением задач (рис. 2, а). На них от точки С° откладывают отрезки С°1, С°2 и т. д., равные радиусу изображаемой окружности. Через точки 1,2, 3 и 4 проводят прямые, параллельные осям х° и Аксонометрическое черчение - примеры с решением заданий и выполнением задач, получая на чертеже точки А, Б, С и D.
  2. Для того чтобы вписать в ромб овал, из вершин тупых углов — точек В и А -проводят дуги. Их радиус R равен расстоянию от вершин тупых углов (точек Б и А) до точек 1, 2 или 3, 4 соответственно (рис. 2, б).
  3. Через точки В и 1, В и 2 проводят прямые. При пересечении прямых В1 и В2 с большей диагональю ромба CD получают точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач(Рис. 2, в). Эти точки будут центрами малых дуг. Их радиус Аксонометрическое черчение - примеры с решением заданий и выполнением задач равен Аксонометрическое черчение - примеры с решением заданий и выполнением задач (или Аксонометрическое черчение - примеры с решением заданий и выполнением задач Дугами малого радиуса Ri соединяют большие дуги овала.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Изображение в аксонометрических проекциях плоских и объемных тел

Алгоритм построения аксонометрических проекций (первый способ — от передней грани предмета): Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Обратите внимание: в аксонометрических проекциях из каждой вершины объекта всегда выходят три луча (видимых или невидимы).

Что такое аксонометрические проекции

Аксонометрические проекции, применяемые в чертежах всех отраслей промышленности и строительства, устанавливает стандарт [14]. Аксонометрические проекции рекомендуется применять для наглядного изображения предметов, выбирая в каждом отдельном случае наиболее подходящую из них.

Изометрическая проекция (рис. 120)

Положение аксонометрических осей и основные соотношения для построения изометрических проекций представлены на рис. 117. Все три оси образуют между собой равные углы в 120°, причем ось OZ располагается на изображении вертикально.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Коэффициент искажения по осям X, Y, Z равен 0,82. Изометрическую проекцию для упрощения, как правило, выполняют без искажения по осям X, Y, Z, т. е. приняв коэффициент искажения равным единице.

Изометрической проекцией окружности является эллипс (лекальная кривая), но для простоты построения изображают овал (циркульная кривая). Построение овала показано на рис. 118.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

При построении точной проекции (с коэффициентом искажения 0,82) большая ось равна диаметру изображаемой окружности, а малая ось равна 0,58 диметра. В данном случае масштаб изображения 1:1. При построении без сокращения размеров по осям OX, OY, OZ большую ось каждого из эллипсов (овалов) следует брать равной 1,22 диаметра изображаемой окружности, а малую ось – равной 0,71 этого диаметра. Тогда масштаб изображения 1,22 : 1.

На рис. 119 показаны направления осей эллипсов (овалов), расположенные в плоскостях, параллельных координатным плоскостям.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Диметрическая проекция

Диметрическая проекция (рис. 126)

Положение осей и основные соотношения для построения диметрических проекций представлены на рис. 121. Для построения угла, приблизительно равного 7°10′, строят прямоугольный треугольник с катетами 1 и 8 единиц; для построения угла, приблизительно равного 41°25′, – с катетами 7 и 8 единиц (рис. 121).

Коэффициент искажения по оси Y равен 0,47, а по осям X и Z – 0,94. Диметрическую проекцию, как правило, выполняют без искажения по осям X и Z и с коэффициентом искажения 0,5 по оси Y.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Диметрической проекцией окружности является эллипс (лекальная кривая), но для простоты построения изображают овал (циркульная кривая), рис. 122. При построении точной проекции с коэффициентами искажения 0,94 и 0,47:

  • – в плоскости XOZ большую ось эллипса следует брать равной диаметру изображаемой окружности, а малую ось – равной 0,9 диаметра;
  • – в плоскостях XOY и YOZ большую ось эллипса также следует брать равной диаметру, а малую ось – равной 0,33 диаметра.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

ГОСТ рекомендует при построении диметрической проекции пользоваться только приведенными коэффициентами. При этом получается изображение, увеличенное в 1,06 раза. При построении по приведенным коэффициентам искажения:

  • – в плоскости XOZ большую ось каждого из эллипсов (овалов) следует брать равной 1,06 диаметра изображаемой окружности, а малую ось – равной 0,95 этого диаметра (рис. 122а);
  • – в плоскостях XOY и YOZ большую ось следует брать также равной 1,06 диаметра окружности, а малую ось – 0,35 диаметра (рис. 122б).

Направление осей эллипсов (овалов), изображающих окружности, определяют так же, как и в изометрической проекции, т. е. большие оси перпендикулярны к соответствующим аксонометрическим осям, а малые – параллельны им (рис. 123).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Штриховка разрезов в аксонометрии

Линии штриховки разрезов и сечений в аксонометрических проекциях наносят параллельно одной из диагоналей квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (рис. 124).

Направление  штриховки  разрезов  в  изометрической  проекции  показано  на рис. 124.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Направление штриховки разрезов в диметрической проекции представлено на рис. 125 и 126.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрические проекции и комплексный чертеж

Комплексный чертеж является графически простым и удобно измеряемым. Но по нему не всегда легко представить предмет в пространстве. Необходим чертеж, дающий и наглядное представление. Он может быть получен при проецировании предмета вместе с осями координат на одну плоскость. В этом случае на одной проекции можно получить наглядное и метрически определенное изображение. Такие виды изо­бражений называют аксонометрическими проекциями.

Способ аксонометрического проецирования

Коэффициенты искажения:

Способ аксонометрического проецирования состоит в том, что фигура вместе с осями прямоугольных координат (к которым она отнесена в пространстве) проецируется на некоторую плоскость. Эту плос­кость называют плоскостью аксонометрических проекций, или картинной плоскостью. В зависимости от удаления центра проецирования от картинной плоскости аксонометрические проекции разделяют на центральные, когда центр проецирования находится на конечном расстоянии от картинной плоскости, и параллельные, когда центр проецирования находится в бесконечности.

В дальнейшем мы будем рассматривать только параллельное аксонометрическое проецирование.

Слово «аксонометрия» (от гр. Аксонометрическое черчение - примеры с решением заданий и выполнением задач— ось и Аксонометрическое черчение - примеры с решением заданий и выполнением задач -измеряю) переводится как «измерение по осям». Аксонометрическое изображение дает возможность производить измерение изображаемого объекта по координатным осям х, у, z и по направлениям, им параллельным.

Построим аксонометрическую проекцию точки А, отнесенной к трем взаимно перпендикулярным плоскостям проекций (рис. 6.I).

Оси координат х, у, z называют натуральными осями координат. Возьмем произвольный масштабный отрезок е (натуральный масштаб) и отложим его на осях, обозначив Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Спроецируем на картинную плоскость Аксонометрическое черчение - примеры с решением заданий и выполнением задач параллельными лучами точку А вместе с проекциями а, а‘. а”, координатными осями и масштабными отрезками Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Введем некоторые наименования:

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

В зависимости от положения плоскостей проекций Н, V, W, плоскости аксонометрических проекций Аксонометрическое черчение - примеры с решением заданий и выполнением задач и направления проецирования Аксонометрическое черчение - примеры с решением заданий и выполнением задачкоординаты точки будут проецироваться с различными искажениями. Отношение длины аксонометрической проекции масштабного от­резка к его истинной величине называется коэффициентом искажения по оси.

Обозначим эти коэффициенты: по оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач по оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач по оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач

В зависимости от соотношения между коэффициентами искажения по осям различают следующие аксонометрические проекции:

  1. Изометрические, если Аксонометрическое черчение - примеры с решением заданий и выполнением задач
  2. Димстрические, если Аксонометрическое черчение - примеры с решением заданий и выполнением задач
  3. Триметрическис, если Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Наименование проекций произошло от древнегреческих слов: Аксонометрическое черчение - примеры с решением заданий и выполнением задач — одинаковый (изометрическая проекция — проекция с одинаковыми коэффициентами искажения по всем трем осям); Аксонометрическое черчение - примеры с решением заданий и выполнением задач — двойной (диметрическая проекция — проекция с одинаковыми коэффициентами искажения по двум осям); «treis» — три (триметрическая проекция — проекция с разными коэффициентами искажения по всем трем осям).

В зависимости от направления проецирования по отношению к плоскости аксонометрических проекций Аксонометрическое черчение - примеры с решением заданий и выполнением задач аксонометрические проекции делятся на прямоугольные, если угол проецирования Аксонометрическое черчение - примеры с решением заданий и выполнением задач и ко­соугольные, если Аксонометрическое черчение - примеры с решением заданий и выполнением задач Доказано, что сумма квадратов коэффициентов искажения удовлетворяет уравнениям:

В зависимости от положения в пространстве осей координат, плоскости аксонометрических проекций и направления проецирования можно получить множество аксонометрических проекций, отличающихся друг от друга направлением аксонометрических осей и масшта­бов по ним. Занимаясь теорией аксонометрии, немецкий геометр К. Польке в 1853 году предложил и доказал для частного случая теорему, названную основной теоремой аксонометрии: «Любые три отрезка, выходящие из одной точки на плоскости, могут быть приняты за параллельные проекции трех равных и взаимно перпендикулярных отрезков в пространст­ве». Доказательство этой теоремы в общем виде было дано в 1864 г. другим немецким геометром Г. Шварцем. С этого времени основная теорема аксонометрии стала называться теоремой Польке — Шварца.

Из рассмотренного выше можно вывести определение аксономет­рии: Аксонометрией называется изображение предмета на плоскости, отнесенное к определенной системе координат и выполненное в определенном масштабе с учетом коэффициентов искажения.

Прямоугольная параллельная изометрия

Прямоугольную параллельную изометрию широко применяют в практике технического черчения. В прямоугольной изометрической проекции коэффициенты искажения по всем трем осям одинаковы Аксонометрическое черчение - примеры с решением заданий и выполнением задач и равны 0,82 Аксонометрическое черчение - примеры с решением заданий и выполнением задач а аксонометрические оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач образуют друг с другом углы в 120° (рис. 6.2).

Однако изометрическую проекцию для упрощения, как правило, выполняют приведенной, принимая коэфициенты искажения по осям Аксонометрическое черчение - примеры с решением заданий и выполнением задач При этом изображение получается увеличенным в 1,22 раза.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Ось Аксонометрическое черчение - примеры с решением заданий и выполнением задач располагают вертикально, а оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач — под углом 30° к горизон­тальному направлению.

Если, например, даны ортогональные проекции точки А (рис. 6.3), то для построения изометрической проекции этой точки проводим аксонометрические оси (рис. 6.4). Далее от начала координат точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач по оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач откладываем отрезок Аксонометрическое черчение - примеры с решением заданий и выполнением задач равный координате Аксонометрическое черчение - примеры с решением заданий и выполнением задач точки А. Координату Аксонометрическое черчение - примеры с решением заданий и выполнением задач берем с комплексного чертежа (рис. 6.3).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Из точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач проводим прямую, параллельную оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач и на ней откладываем отрезок, равный координате Аксонометрическое черчение - примеры с решением заданий и выполнением задач точки А, получаем точку Аксонометрическое черчение - примеры с решением заданий и выполнением задач из точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач проводим отрезок, параллельный оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач и равный координате Аксонометрическое черчение - примеры с решением заданий и выполнением задач точки А. Полученная точка Аксонометрическое черчение - примеры с решением заданий и выполнением задач — изометрическая проекция точки А.

Построение изометрии пятигранной пирамиды по ее чертежу по­казано на рис. 6.5. Определяем координаты всех точек основания пирамиды. Затем по координатам х и у строим изометрию пяти точек — вершин основания пирамиды. Например, для построения изометрической проекции точки А по оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач от начала координат точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач откладываем отрезок, равный координате Аксонометрическое черчение - примеры с решением заданий и выполнением задач Из конца отрезка проводим прямую, параллельную оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач На ней откладываем отрезок, равный второй координате точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач Далее строим высоту пирамиды и находим точку Аксонометрическое черчение - примеры с решением заданий и выполнением задач ее вершину. Соединяя точку Аксонометрическое черчение - примеры с решением заданий и выполнением задач с точками основания Аксонометрическое черчение - примеры с решением заданий и выполнением задачАксонометрическое черчение - примеры с решением заданий и выполнением задач получаем изометрию пирамиды.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

На рис. 6.6 приведен пример построения изометрии шестигранной призмы.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Прямоугольная параллельная диметрия

В прямоугольной диметрии коэффициенты искажения по оси Аксонометрическое черчение - примеры с решением заданий и выполнением задачи Аксонометрическое черчение - примеры с решением заданий и выполнением задач принимают равными — Аксонометрическое черчение - примеры с решением заданий и выполнением задач а по оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач — в два раза меньше — Аксонометрическое черчение - примеры с решением заданий и выполнением задач Тогда Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Ось Аксонометрическое черчение - примеры с решением заданий и выполнением задач-вертикальная, ось Аксонометрическое черчение - примеры с решением заданий и выполнением задачрасположена под углом Аксонометрическое черчение - примеры с решением заданий и выполнением задач Ось Аксонометрическое черчение - примеры с решением заданий и выполнением задач расположена под углом 41°25′ к горизонтальной прямой (рис. 6.7). На практике, как правило, выполняют приведенную диметрию, принимая коэффициенты искажения Аксонометрическое черчение - примеры с решением заданий и выполнением задач а Аксонометрическое черчение - примеры с решением заданий и выполнением задач В этом случае изображение увеличивается в 1,06 раза. Если дана ортогональная про­екция точки А (рис. 6.8), то для построения диметрической проекции этой точки проводим аксонометрические оси под заданными углами (рис. 6.9).

Откладываем по оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач от начала координат отрезок Аксонометрическое черчение - примеры с решением заданий и выполнением задач равный координате Аксонометрическое черчение - примеры с решением заданий и выполнением задач точки А. Из точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач проводим прямую, параллельную оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач и на ней откладываем отрезок, равный половине координаты Аксонометрическое черчение - примеры с решением заданий и выполнением задач точки А, так как коэффициент искажения по оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач равен 0,5. Из точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач, проводим отрезок Аксонометрическое черчение - примеры с решением заданий и выполнением задач равный координате Аксонометрическое черчение - примеры с решением заданий и выполнением задач Получаем точку Аксонометрическое черчение - примеры с решением заданий и выполнением задач — диметрическую проекцию точки А.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построение диметрии призмы с призматическим углублением (рис. 6.10) показано на рис. 6.11.

Для выявления внутренней формы детали аксонометрическая проекция выполнена с вырезом 1/4 (угол, образованный секущими плоскостями, выполняется раскрытым). Так как деталь симметрична, начало координат (точку О) выбираем в центре призмы и строим оси х, Аксонометрическое черчение - примеры с решением заданий и выполнением задач (рис. 6.10). Аксонометрическую проекцию выполняем в следующей последо­вательности.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Строим аксонометрические оси и плоские фигуры, полученные при сече­нии детали плоскостями xOz и yOz (рис. 6.1 1, а).

Обозначим вершины нижнего основания (точки 1,2,3, 4) и строим аксонометрические проекции точек 2, 3, 4.

Строим верхнее основание призмы. Для этого проводим из полученных точек отрезки, параллельные оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач Затем откладываем на них высоту призмы Аксонометрическое черчение - примеры с решением заданий и выполнением задач (рис. 6.11,6).

В верхнем основании обозначим вершины призматического отверстия (точки 5, 6, 7, X). Строим аксонометрические проекции точек 6, 7, 8. Из этих точек проводим линии, параллельные оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач и на них откладываем Аксонометрическое черчение - примеры с решением заданий и выполнением задач — глубину отверстия. Полученные точки соединяем тонкими линиями (рис. 6.11, в). Обводим видимые линии чертежа и убираем вспомогательные по­строения. Проводим линии штриховки сечений (рис. 6.11, г).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Линии штриховки сечений в аксонометрических проекциях проводят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (рис. 6.12 — для изометрии, рис. 6.13 — для диметрии).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Изображение окружности и шара в прямоугольной аксонометрии

Окружность в аксонометрии в общем случае проецируется в эллипс. При построении эллипса необходимо знать направление его осей и их размеры. Малая ось эллипса всегда должна быть перпендикулярна большой. При построении проекции окружности, лежащей в одной из координатных плоскостей, малая ось эллипса направлена параллельно аксонометрической оси, не участвующей в образовании данной плоскости. Соответственно, большая ось эллипса ей перпендикулярна.

Изометрическая проекция окружности

При построении точной аксонометрии окружности величина большой оси эллипса равна величине диаметра этой окружности. При построении приведенной аксонометрии размеры увеличиваются в 1,22 раза. Поэтому величина большой оси эллипса составляет Аксонометрическое черчение - примеры с решением заданий и выполнением задач а величина малой оси — Аксонометрическое черчение - примеры с решением заданий и выполнением задач На рис. 6.14 показан графический способ определения размеров осей эллипса.

Вычерчиваем окружность диаметра D. хорда АВ = Аксонометрическое черчение - примеры с решением заданий и выполнением задач (величина малой оси эллипса). Приняв за центр точки А и В, радиусом, равным АВ, проводим дуги до их взаимного пересечения. Полученные точки Е и F соединяем прямой линией. EF= Аксонометрическое черчение - примеры с решением заданий и выполнением задач — величина большой оси эллипса.

Построим аксонометрические оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач В плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач выбираем произвольную точку Аксонометрическое черчение - примеры с решением заданий и выполнением задач Через нее проводим прямые параллельно осям Аксонометрическое черчение - примеры с решением заданий и выполнением задач На них откладываем отрезки, равные диаметру окружности. На линии, проведенной параллельно оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач (направление ма­лой оси эллипса), откладываем отрезок, равный АВ (малую ось эллип­са). Перпендикулярно малой оси строим большую ось эллипса, равную EF (рис. 6.15).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Соединив полученные 8 точек, получим эллипс. Для построения эллипса можно использовать и другие способы.

Построение эллипсов в других плоскостях не отличается по своему характеру, меняется только направление большой и малой осей эллипса.

Диметрическая проекция окружности

В изометрии величины большой и малой осей эллипса остаются одинаковыми независимо от плоскости, в которой расположена окружность. В диметрии постоянной остается только величина большой оси, равная Аксонометрическое черчение - примеры с решением заданий и выполнением задач В плоскостях горизонтальной Н и профильной W малая ось эллипса составляет Аксонометрическое черчение - примеры с решением заданий и выполнением задач а в плоскости фронтальной V малая ось равна Аксонометрическое черчение - примеры с решением заданий и выполнением задач Для определения величин осей эллипса графическим способом построим прямоугольный треугольник (рис. 6.16).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Катеты треугольника равны 100 мм и 35 мм. Гипотенуза при этом равна 106 мм. Отложим по большому катету значение, равное диаметру окружности D (отрезок АВ). Отрезок ВС будет равен Аксонометрическое черчение - примеры с решением заданий и выполнением задач то есть значению малой оси эллипса для плоскостей Н и Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Отрезок АС равен Аксонометрическое черчение - примеры с решением заданий и выполнением задач то есть значению большой оси эллипса. Если мы отложим величину диаметра D по гипотенузе (отрезок АК), затем из точки К опустим перпендикуляр на большой катет треугольника, то отрезок АЕ будет равен значению 0,94D, то есть величине малой оси эллипса для плоскости V.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Изображение окружности в прямоугольной диметрической проекции показано на рис. 6.17.

Например, для построения окружности в плоскости V через точку Аксонометрическое черчение - примеры с решением заданий и выполнением задач параллельно осям Аксонометрическое черчение - примеры с решением заданий и выполнением задач проводим прямые и на них откладываем вели­чины, равные диаметру окружности. На линии, проведенной параллельно оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач откладываем значение, равное 0,94D (величину малой оси эллипса).

Перпендикулярно малой оси строим большую ось эллипса, равную Аксонометрическое черчение - примеры с решением заданий и выполнением задач Полученные точки соединяем плавной линией.

Изображение шара и тора

В прямоугольной параллельной аксонометрии шар изображается окружностью. При построении шара по натуральным показателям искажения его аксонометрической проекцией будет окружность, диаметр которой равен диаметру изображаемого шара.

При построении изображения шара по приведенным показателям диаметр окружности увеличивается в соответствии с увеличением коэффициента приведения: в изометрии — в 1,22 раза (рис. 6.18, а), в диметрии — в 1,06 раза (рис. 6.18, б).

На рис 6.18, в показана изометрическая проекция тора, выполнен­ная с помощью вписанных в него вспомогательных сфер.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Фронтальная изометрическая проекция

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

В косоугольной фронтальной аксонометрии аксонометрическую плоскость располагают параллельно фронтальной плоскости проекций (рис. 6.19). Направление проецирования выбирают так, чтобы аксонометрические оси располагались, как показано на рис. 6.20.

Допускается применять фронтальные изометрические проекции с углом наклона оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач в 30° и 60°. Фронтальную изометрическую проекцию выполняют без искажения по осям Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций V, проецируются па аксонометрическую плоскость в окружности. Окружности, лежащие в плоскостях, параллельных плоскостям Н и W проецируются в эллипсы (рис. 6.2 I).

Большая ось эллипсов 2 и 3 составляет Аксонометрическое черчение - примеры с решением заданий и выполнением задач а малая ось — 0,54D, где D — диаметр окружности. Большая ось эллипсов 2 и 3 направлена по биссектрисе острого угла между прямыми, параллельными аксонометрическим осям и проходящими через центры эллипсов.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Деталь во фронтальной изометрии нужно располагать по отношению к осям так, чтобы сложные плоские фигуры, окружности, дуги плоских кривых находились в плоскостях, параллельных фронтальной плоскости проекций. Тогда их построение упрощается, так как они изображаются без искажения (рис. 6.22).

Фронтальная диметрическая проекция

Положение аксонометрических осей такое же, как у фронтальной изометрической проекции (рис. 6.23).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Можно применять фронтальные диметрические проекции с углом наклона оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач в 30° и 60°.

Коэффициент искажения по оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач, равен 0.5, по осям Аксонометрическое черчение - примеры с решением заданий и выполнением задач Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций Аксонометрическое черчение - примеры с решением заданий и выполнением задач проецируются на аксонометрическую плоскость в окружности, а окружности, лежащие в плоскостях, параллельных гори­зонтальной Н и профильной W плоскостям проекций, — в эллипсы (рис. 6.24),

Большая ось эллипсов 2 и 3 АВ = 1,07, а малая ось — CD = 0,33 диаметра окружности. Большая ось эллипса 2 наклонена к горизонтальной оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач под углом 7° 14′, а большая ось эллипса 3 — под тем же углом к вертикальной оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач Как и во фронтальной изометрии, деталь в этом случае нужно располагать по отношению к осям так, чтобы сложные плоские фигуры, окружности, дуги плоских кривых находились в плоскостях, параллель­ных фронтальной плоскости проекций (рис. 6.25).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрические проекции и их изображения

Аксонометрические проекции наряду с эпюром Монжа являются частным вариантом метода двух изображений, получившим широкое распространение в практике технического черчения. Аксонометрические проекции служат для получения наглядных изображений, дающих более полное представление о конструкции изображаемых объектов (рис. 95).

Аксонометрические проекции как частный случай метода двух изображений

Аксонометрические проекции как частный случай метода двух изображений получаются при использовании следующего аппарата проецирования.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задачобразуют произвольный, в частности прямой, угол (рис. 96). При проецировании на плоскость Аксонометрическое черчение - примеры с решением заданий и выполнением задач используется параллельное проецирование – как косоугольное, так и ортогональное. При проецировании на плоскость Аксонометрическое черчение - примеры с решением заданий и выполнением задач используется только ортогональное проецирование.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рассмотрим построение аксонометрической проекции некоторой произвольной точки пространства А. В результате проецирования точки А на плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач получим соответственно проекции Аксонометрическое черчение - примеры с решением заданий и выполнением задач Для перехода к одной картинной плоскости точку Аксонометрическое черчение - примеры с решением заданий и выполнением задач дополнительно проецируем на плоскость Аксонометрическое черчение - примеры с решением заданий и выполнением задач из центра Аксонометрическое черчение - примеры с решением заданий и выполнением задач В результате проецирования точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач на плоскость Аксонометрическое черчение - примеры с решением заданий и выполнением задач получим точку Аксонометрическое черчение - примеры с решением заданий и выполнением задач т.е. проекцию точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач на плоскость Аксонометрическое черчение - примеры с решением заданий и выполнением задач. Таким образом, плоской аксонометрической моделью точки А является пара точек Аксонометрическое черчение - примеры с решением заданий и выполнением задач Точка Аксонометрическое черчение - примеры с решением заданий и выполнением задач называется главной (первичной) аксонометрической проекцией точки А, точка Аксонометрическое черчение - примеры с решением заданий и выполнением задач – вторичной проекцией.

Обратим внимание на построение аксонометрической проекции точки В, принадлежащей плоскости проекций Аксонометрическое черчение - примеры с решением заданий и выполнением задач Если точка В принадлежит плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач то проекция точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач совпадает с точкой В и, как следствие, главная и вторичная проекции точки В совпадают Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Для решения метрических задач в аксонометрии исходную точку пространства А свяжем с декартовой системой координат Аксонометрическое черчение - примеры с решением заданий и выполнением задач расположенной так, что плоскость Аксонометрическое черчение - примеры с решением заданий и выполнением задач принадлежит плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач (рис. 97). Затем проецируем исходную систему координат совместно с точкой А на аксонометрическую плоскость проекций Аксонометрическое черчение - примеры с решением заданий и выполнением задач Обратим внимание, что начало координат (точка О) и координатные оси x и y принадлежат плоскости проекций Аксонометрическое черчение - примеры с решением заданий и выполнением задач следовательно, их главные и вторичные проекции совпадают, т.е. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Главной аксонометрической проекцией оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач будет некоторая прямая линия Аксонометрическое черчение - примеры с решением заданий и выполнением задач вторичная же проекция – Аксонометрическое черчение - примеры с решением заданий и выполнением задач совпадает с проекцией Аксонометрическое черчение - примеры с решением заданий и выполнением задач начала координат.

Построение аксонометрической проекции точки А в аксонометрической проекции декартовой системы координат Аксонометрическое черчение - примеры с решением заданий и выполнением задач включает в себя два этапа:

Необходимо отметить, что вторичные проекции могут быть горизонтальными, фронтальными и профильными, и их использование зависит от удобства построения каждого конкретного чертежа. Так, например, на рис. 97 используется горизонтальная вторичная проекция.

В исходной системе координат определим единичные отрезки по каждой оси – Аксонометрическое черчение - примеры с решением заданий и выполнением задач В аксонометрической системе координат проекциями единичных отрезков являются отрезки Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Искажения по аксонометрическим осям определяются коэффициентами искажения, равными отношениям длин аксонометрических единичных отрезков к натуральным масштабным единицам по соответствующим осям: Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Теорема Польке

При построении аксонометрических изображений необходимо знать, насколько произвольно могут быть выбраны аксонометрические оси и аксонометрические единичные отрезки. Ответ на этот вопрос дает основная теорема аксонометрии, сформулированная немецким ученым Карлом

Польке и соответственно именуемая теоремой Польке: три отрезка прямых произвольной длины, лежащих в одной плоскости и выходящих из одной точки под произвольными углами друг к другу, представляют параллельную проекцию трех равных отрезков, отложенных на координатных осях от начала.

Таким образом, на основании этой теоремы можно утверждать, что аксонометрические оси и коэффициенты искажения по осям могут выбираться произвольно, т.е. аксонометрий можно построить бесконечно большое количество. Однако доказано, что для любой произвольной аксонометрической проекции коэффициенты искажения связаны между собой со- отношением, называемым основным уравнением аксонометрии: Аксонометрическое черчение - примеры с решением заданий и выполнением задач где φ – угол, характеризующий операцию параллельного проецирования.

Классификация аксонометрических проекций

Классифицировать аксонометрические проекции возможно по двум признакам: по виду операции проецирования, используемой при построении аксонометрической проекции, и по показателям искажения. В зависимости от вида операции проецирования аксонометрии могут быть косоугольные (φ ≠ 90°) и прямоугольные (φ = 90°). В зависимости от соотношения показателей искажения аксонометрии могут быть:

  • триметрические (все показатели искажения различны);
  • диметрические (два показателя искажения равны, но не равны третьему;
  • изометрические (все показатели искажения равны друг другу).

Стандартные аксонометрические проекции

В соответствии с теоремой Польке выбор аксонометрических осей и коэффициентов искажения может быть произвольным. Выполнять чертежи, пользуясь произвольным видом аксонометрии, невозможно. Поэтому ГОСТ 2.317–69 устанавливает пять видов стандартных аксонометрических проекций (рис. 98).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Из стандартных аксонометрий наиболее часто используются две прямоугольные (изометрическая и диметрическая) и три вида косоугольных (фронтальная изометрическая, горизонтальная изометрическая, фронтальная диметрическая). При построении стандартных аксонометрических проекций используются приведенные коэффициенты искажения, равные, как правило, 1 или 0,5, т.е. большие, чем коэффициенты искажения, рассчитанные по основному уравнению аксонометрии.

Задача.

Построить стандартные аксонометрические проекции (прямоугольную изометрию и косоугольную фронтальную диметрию) отрезка АВ, заданного на эпюре Монжа координатами точек А (40; 10; 40) и В (10; 50; 20), рис. 99.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Алгоритм решения

  1. Строим вторичные аксонометрические проекции точек А и В – точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач в плоскостях Аксонометрическое черчение - примеры с решением заданий и выполнением задач по соответствующим координатам с учетом коэффициентов искажения по осям.
  2. По вторичным проекциям точек, строим главные аксонометрические проекции Аксонометрическое черчение - примеры с решением заданий и выполнением задач откладывая значения координат точек А и В по оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач В результате построений получим косоугольную фронтальную диметрию отрезка АВ, представ- ленную на рис. 100, а, и прямоугольную изометрию, представленную на рис. 100, б.

Сравнение изображений геометрических объектов на эпюре Монжа и на аксонометрическом чертеже позволяет сделать следующие выводы:

  • изображения геометрических фигур на эпюре Монжа и на аксонометрическом чертеже принципиально ничем не отличаются, так как в основе этих чертежей лежит единая схема метода двух изображений; фигуры на обоих чертежах изображаются двумя проекциями; эпюр Монжа проще и точнее аксонометрического чертежа, так как на эпюре Монжа все единичные отрезки изображаются без искажения, а в аксонометрии – с искажением;

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

  • аксонометрический чертеж нагляднее эпюра Монжа, так как проекции координатных плоскостей в аксонометрии являются невырожденными, а на двухкартинном эпюре Монжа изображение координатной плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач в обеих проекциях вырождается в прямую;
  • алгоритмы графического решения позиционных задач на эпюре Монжа и на аксонометрическом чертеже одинаковы.

Как построить аксонометрию

Аксонометрические проекции (аксонометрия) служат для наглядного изображения предмета. Название «аксонометрия» образовано из слов древнегреческого языка: «аксон» — ось и «метрео» — измеряю, т.е. измерение по осям.

Аксонометрическая проекция предмета получается параллельным проецированием его вместе с осями прямоугольных координат, к которым этот предмет отнесен, на одну плоскость проекций, называемую аксонометрической плоскостью проекций или картинной плоскостью.

Аксонометрическая проекция — это однокартинный чертеж, на котором получается изображение всех трех измерений предмета. Этим и объясняется его наглядность.

На рис. 249 схематично показано получение аксонометрической проекции точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач Основные обозначения на рисунке следующие:

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрической проекцией точки называется точка пересечения проецирующего луча, проведенного через заданную точку в пространстве, параллельно направлению проецирования, с аксонометрической плоскостью проекций.

Таким образом, чтобы получить аксонометрическую проекцию точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач через нее проводят проецирующий луч параллельно направлению проецирования Аксонометрическое черчение - примеры с решением заданий и выполнением задач до пересечения с плоскостью проекций Аксонометрическое черчение - примеры с решением заданий и выполнением задач в точке Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Это построение показывает, что при заданном направлении проецирования каждой точке Аксонометрическое черчение - примеры с решением заданий и выполнением задач пространства на плоскости проекций соответствует определенная точка Аксонометрическое черчение - примеры с решением заданий и выполнением задач Но обратное утверждать нельзя. Проекции Аксонометрическое черчение - примеры с решением заданий и выполнением задач на плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач соответствует любая точка проецирующего луча Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Для устранения этой неопределенности и обеспечения взаимной однозначности между точками пространства и точками аксонометрической (картинной) плоскости проекций на плоскость Аксонометрическое черчение - примеры с решением заданий и выполнением задач проецируют не только точку Аксонометрическое черчение - примеры с решением заданий и выполнением задач но и одну из ее ортогональных проекций (обычно горизонтальную проекцию Аксонометрическое черчение - примеры с решением заданий и выполнением задач Аксонометрическое черчение - примеры с решением заданий и выполнением задач — есть вторичная проекция точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Вторичной проекцией точки называется аксонометрическая проекция одной из ее ортогональных проекций.

Этот термин отражает тот факт, что точка Аксонометрическое черчение - примеры с решением заданий и выполнением задач получается в результате двух последовательных проецирований точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач (первое — точка Аксонометрическое черчение - примеры с решением заданий и выполнением задач проецируется на Аксонометрическое черчение - примеры с решением заданий и выполнением задач второе — Аксонометрическое черчение - примеры с решением заданий и выполнением задач проецируется на Аксонометрическое черчение - примеры с решением заданий и выполнением задач Аксонометрическая проекция точки и ее вторичная проекция однозначно определяют положение точки в пространстве. Они находятся на одной прямой, параллельной соответствующей оси.

Коэффициенты искажения

В общем случае длина отрезков осей координат в пространстве не равна длине их проекций. Искажение отрезков осей координат при их проецировании на плоскость Аксонометрическое черчение - примеры с решением заданий и выполнением задач характеризуется коэффициентами искажения.

Для определения коэффициентов искажения по аксонометрическим осям Аксонометрическое черчение - примеры с решением заданий и выполнением задач на них откладываются отрезки длиной Аксонометрическое черчение - примеры с решением заданий и выполнением задач принимаемые за единицу измерения по этим осям (см. рис. 249). Величины Аксонометрическое черчение - примеры с решением заданий и выполнением задач являются аксонометрическими проекциями этих отрезков.

Коэффициентом искажения называется отношение длины аксонометрической проекции отрезка, лежащего на координатной оси или параллельного ей, к истинной длине самого отрезка.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач — коэффициенты искажения по осям Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задачсоответственно.

В инженерной практике при построении аксонометрических проекций пользуются не действительными коэффициентами искажения, а приведенными, удобными для построения. Обычно приведенные коэффициенты искажения берут равными единице, что значительно упрощает построение. Изображение при этом несколько увеличивается, однако это не влияет на его наглядность.

При помощи коэффициентов искажения можно перейти от прямоугольных координат к аксонометрическим и наоборот.

Классификация аксонометрических проекций

Аксонометрические проекции классифицируют в основном по двум признакам:

1. По направлению проецирования.

В зависимости от направления проецирования все аксонометрические проекции делятся на две группы:

2. По коэффициентам искажения.

В зависимости от коэффициентов искажения все аксонометрические проекции делятся на три группы:

— изометрия — коэффициенты искажения по всем трем осям равны между собой,

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

— диметрия — коэффициенты искажения по двум осям равны между собой, а третий им не равен,

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

— триметрия — коэффициенты искажения по всем трем осям не равны между собой,

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Между коэффициентами искажения и углом Аксонометрическое черчение - примеры с решением заданий и выполнением задач образованным направлением проецирования с плоскостью Аксонометрическое черчение - примеры с решением заданий и выполнением задач существует следующая зависимость:

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Сумма квадратов коэффициентов искажения по аксонометрическим осям равна двум плюс квадрату котангенса угла проецирования. Котангенс прямого угла равен нулю, следовательно, для прямоугольных аксонометрических проекций справедливо следующее уравнение:

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Основная теорема аксонометрии

Всякое изменение положения осей в пространстве и направления проецирования влечет за собой изменение положения аксонометрических осей и коэффициентов искажения по осям.

Вопрос о том, какие положения могут принимать аксонометрические оси и какие величины могут принимать коэффициенты искажения по осям в зависимости от положения осей проекций в пространстве и направления проецирования, был разрешен в прошлом веке геометрами Польке и Шварцем. Они сформулировали основную теорему аксонометрии: любой полный четырехугольник на плоскости всегда является параллельной проекцией некоторого масштабного тетраэдра.

Если на плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач (рис. 250, а) взять произвольно четыре точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач и соединить их попарно прямыми, то получится фигура, называемая полным четырехугольником Аксонометрическое черчение - примеры с решением заданий и выполнением задач Таким образом, полным является четырехугольник с его диагоналями. Если далее через эти точки провести параллельные между собой прямые и взять на каждой из них по произвольной точке Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач так, чтобы все они не лежали в одной плоскости, то в пространстве образуется некоторый тетраэдр Аксонометрическое черчение - примеры с решением заданий и выполнением задач (рис. 250, 6). Очевидно, тетраэдров в пространстве, параллельной проекцией которых может служить четырехугольник Аксонометрическое черчение - примеры с решением заданий и выполнением задач может быть бесконечное множество. В их числе содержится и тетраэдр с прямым трехгранным углом при точке Аксонометрическое черчение - примеры с решением заданий и выполнением задач и с равными ребрами Аксонометрическое черчение - примеры с решением заданий и выполнением задач Такой тетраэдр можно рассматривать как масштабный, т.е. три равных и взаимно перпендикулярных ребра этого тетраэдра служат масштабами осей координат в пространстве (рис. 250, в). Отсюда, любые три прямые, проходящие через одну из точек на плоскости и не совпадающие между собой, могут быть приняты за аксонометрические оси, т.е. за проекции осей прямоугольных координат Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Согласно основной теореме аксонометрии аксономерические оси и коэффициенты искажения по ним могут выбираться произвольно. Задавая разные направления для любой натуральной системы координат, можно получить множество аксонометрических проекций, отличающихся друг от друга как направлением аксонометрических осей, так и величиной коэффициентов искажения вдоль этих осей.

В практике построения наглядных аксонометрических изображений обычно применяют некоторые определенные комбинации направлений аксонометрических осей и коэффициентов искажения, которые дают реальное восприятие предмета и удобны для построения.

Стандартные аксонометрические проекции

Согласно ГОСТ 2.317-69 рекомендуется применять пять стандартных аксонометрических проекций. Из прямоугольных аксонометрических проекций применяют изометрию и диметрию, из косоугольных — фронтальную изометрию, горизонтальную изометрию и фронтальную диметрию.

Прямоугольные проекции

В названии отражается способ получения аксонометрических проекций. Прямоугольная проекция получена прямоугольным проецированием, а слова «изометрия» или «диметрия» говорят о расположении пространственных координатных осей относительно картинной плоскости.

Изометрическая проекция

В изометрии соблюдается равенство коэффициентов искажения Аксонометрическое черчение - примеры с решением заданий и выполнением задач Для того чтобы получить искажения, равные между собой, необходимо оси координат в пространстве расположить относительно картинной плоскости так, чтобы углы наклона их к плоскости были одинаковые, тогда проекции их изобразятся на Аксонометрическое черчение - примеры с решением заданий и выполнением задач под углом 120° друг к другу ( рис. 251).

В прямоугольной аксонометрии Аксонометрическое черчение - примеры с решением заданий и выполнением задач откуда Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Это действительные коэффициенты искажения по всем осям. Стандарт рекомендует изометрическую проекцию строить без сокращения по осям координат (приведенные коэффициенты искажения по всем осям равны единице), что соответствует увеличению изображения в Аксонометрическое черчение - примеры с решением заданий и выполнением задач раза.

Диметрическая проекция

Эта проекция получается прямоугольным проецированием осей на одну плоскость проекций Аксонометрическое черчение - примеры с решением заданий и выполнением задач При этом оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач располагаются относительно картинной плоскости так, чтобы углы наклона их были одинаковые, а ось Аксонометрическое черчение - примеры с решением заданий и выполнением задач так, чтобы коэффициент искажения по ней был вдвое меньше.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Подставляя эти значения в формулу Аксонометрическое черчение - примеры с решением заданий и выполнением задач будем иметь:

Аксонометрическое черчение - примеры с решением заданий и выполнением задач откуда Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Это действительные коэффициенты искажения. Так как в практике такие дробные числа неудобны, то применяются приведенные коэффициенты искажения: Аксонометрическое черчение - примеры с решением заданий и выполнением задач

При этом изображение получается увеличенным в Аксонометрическое черчение - примеры с решением заданий и выполнением задач раза.

При указанном выше положении осей в пространстве их проекции изображаются так: ось Аксонометрическое черчение - примеры с решением заданий и выполнением задач — вертикально, между осями Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач угол 97° 10′, т.е. осьАксонометрическое черчение - примеры с решением заданий и выполнением задач располагается под углом 7° 10′ к горизонтальной прямой, а ось Аксонометрическое черчение - примеры с решением заданий и выполнением задач под углом 41°25′ к ней (рис. 252).

Прямоугольные аксонометрические проекции применяются в машиностроительных чертежах.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Косоугольные проекции

У косоугольных проекций обычно две оси координат Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач или Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач располагаются параллельно картинной плоскости, поэтому они изображаются без искажения. Для того чтобы получилось изображение всех трех измерений предмета, связанного с осями, направление проецирования выбирается не под прямым углом. При угле Аксонометрическое черчение - примеры с решением заданий и выполнением задач равном 45°, по третьей оси искажения не возникает, получается косоугольная изометрическая проекция. Часто направление проецирования выбирается такое, чтобы коэффициент искажения по третьей оси был равен 0,5, тогда получаются косоугольные диметрические проекции.

Фронтальная изометрическая проекция

Координатные оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач располагаются параллельно картинной плоскости. Таким образом, фронтальная плоскость проекций Аксонометрическое черчение - примеры с решением заданий и выполнением задач будет параллельна картинной плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач поэтому такая аксонометрическая проекция называется фронтальной. Все, что расположено в плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач или в плоскостях, ей параллельных, на плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач изобразится без искажения. Коэффициенты искажения по всем осям будут равны единице. Аксонометрические оси (рис. 253) Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач располагаются перпендикулярно друг другу, а ось Аксонометрическое черчение - примеры с решением заданий и выполнением задач — под углом 45° к горизонтальной прямой. Допускается применять фронтальные изометрические проекции с углом наклона оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач равным 30 и 60°. Ось у может быть обращена влево вниз, влево вверх и т.д., что соответствует различному направлению проецирования и расположению плоскости проекций относительно осей координат.

Косоугольная фронтальная изометрическая проекция применяется в сантехнических чертежах при изображении аксонометрических схем трубопроводов.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Горизонтальная изометрическая проекция

Координатные оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач располагаются параллельно картинной плоскости. Горизонтальная плоскость проекций Аксонометрическое черчение - примеры с решением заданий и выполнением задач определяемая этими осями, будет параллельна картинной плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач поэтому аксонометрическая проекция называется горизонтальной. Все, что расположено в плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач или в плоскостях, ей параллельных, на плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач изображается без искажения. Коэффициенты искажения по всем осям принимаются равными единице.

Аксонометрические оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач располагаются под прямым углом друг к другу, а ось Аксонометрическое черчение - примеры с решением заданий и выполнением задач— под углом в 30° к горизонтальной прямой (рис. 254). Допускается применять горизонтальные изометрические проекции с углом наклона оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач и 60°, сохраняя угол между осями Аксонометрическое черчение - примеры с решением заданий и выполнением задач В практике используется горизонтальная косоугольная изометрия с осями Аксонометрическое черчение - примеры с решением заданий и выполнением задачи Аксонометрическое черчение - примеры с решением заданий и выполнением задач обращенными вверх от точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач В этом случае предметы изображаются при направлении проецирования снизу вверх.

Этот вид аксонометрии удобен при построении наглядного изображения застройки кварталов в инженерно-строительной практике, при решении вопросов пространственной композиции жилых районов и архитектурных ансамблей.

Фронтальная диметрическая проекция

Координатные оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач а следовательно, и плоскость Аксонометрическое черчение - примеры с решением заданий и выполнением задач располагаются параллельно картинной плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач Коэффициенты искажения по осям Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач равны единице, а по оси У коэффициент принимается равным 0,5.

Аксонометрические оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач располагаются под прямым углом друг к другу, а ось Аксонометрическое черчение - примеры с решением заданий и выполнением задач — под углом 45° к горизонтальной прямой (рис. 255). Допускается применять фронтальные диметрические проекции с углом наклона оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач равным 30 и 60°.

Этот вид аксонометрии применяется в . машиностроительных чертежах при изображении деталей, имеющих большое количество окружностей, расположенных параллельно фронтальной плоскости (детали типа валика).   

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построение аксонометрической проекции окружности по восьми точкам

При параллельном проецировании окружности на какую-либо плоскость получаем ее изображение в общем случае в виде эллипса. Отдельные точки окружности строятся как точки пересечения двух прямых, удобных для построения. Обычно в качестве таких прямых берут стороны описанного квадрата и его диагонали. В аксонометрии квадрат в общем случае изображается в виде параллелограмма, т.к. при параллельном проецировании параллельность прямых сохраняется. На рис. 256 показано построение аксонометрической проекции окружности в прямоугольной изометрии, а на рис. 257 — в прямоугольной диметрии.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Четыре точки касания сторон квадрата с окружностью 1, 2, 3, 4 в аксонометрии будут находиться на середине каждой стороны параллелограмма. Еще четыре точки 5, 6, 7, 8 находятся на пересечении диагоналей параллелограмма со вспомогательными прямыми. Они проведены параллельно соответствующим аксонометрическим осям на расстояниях, равных отрезку Аксонометрическое черчение - примеры с решением заданий и выполнением задач Соединив полученные восемь точек плавной кривой, получают эллипс.

В прямоугольных изометрии и диметрии большие оси эллипсов перпендикулярны отсутствующим в плоскости эллипса осям, а малые оси по направлению совпадают с ними.

Например, эллипс, построенный в плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач имеет большую ось, перпендикулярную оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач а малую — совпадающую с направлением оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Косоугольные аксонометрические проекции окружности строятся аналогично.

При построении диметрической проекции окружности надо учитывать коэффициент искажения по оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач который равен 0,5.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Последовательность построения аксонометрических проекций

Переход от ортогональных проекций предмета к аксонометрическим проекциям рекомендуется осуществлять в такой последовательности:

  1. на ортогональном чертеже обозначают оси прямоугольной системы координат, к которой и относят данный предмет. Оси ориентируют так, чтобы они допускали удобное измерение координат точек предмета. У поверхностей вращения эти оси целесообразно совмещать с осями симметрии, а у гранных поверхностей — с ребрами;
  2. строят аксонометрические оси с таким расчетом, чтобы была обеспечена наилучшая наглядность изображения и видимость отдельных элементов предмета;
  3. по одной из ортогональных проекций предмета чертят вторичную проекцию. Вычерчивать рекомендуется ту вторичную проекцию предмета, которая проще других. Таким образом, используют два измерения предмета;
  4. создают аксонометрическое изображение, откладывая третье измерение предмета, от соответствующих вторичных проекций.

На рис. 258 показано построение точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач в прямоугольной изометрии по заданным ортогональным проекциям. Построение выполнено в следующей последовательности:

  1. относят точку Аксонометрическое черчение - примеры с решением заданий и выполнением задач к координатным осям Аксонометрическое черчение - примеры с решением заданий и выполнением задач
  2. проводят аксонометрические оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач углом 120° друг к другу;
  3. строят вторичную проекцию точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач по ее горизонтальной проекции. Для этого измеряют координаты Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач на координатных осях и откладывают их на аксонометрических осях Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач Через полученные точки проводят прямые, параллельные соответствующим аксонометрическим осям Аксонометрическое черчение - примеры с решением заданий и выполнением задач и Аксонометрическое черчение - примеры с решением заданий и выполнением задач На пересечении этих линий находится точка Аксонометрическое черчение - примеры с решением заданий и выполнением задач — вторичная проекция точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

4. строят аксонометрическую проекцию точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач Для этого через вторичную проекцию Аксонометрическое черчение - примеры с решением заданий и выполнением задач проводят прямую, параллельную аксонометрической оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач и на этой прямой откладывают отрезок, равный координате Аксонометрическое черчение - примеры с решением заданий и выполнением задач Получается точка Аксонометрическое черчение - примеры с решением заданий и выполнением задач — аксонометрическая проекция точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическая и вторичная проекции точки вполне определяют ее положение в пространстве.

Построение конуса в прямоугольной изометрии показано на рис. 259, а, б. По ортогональным проекциям (см. рис. 259, а) строят вторичную проекцию основания — окружность, которая в аксонометрии проецируется в эллипс. Построение эллипса выполняют по 8 точкам (см. рис. 259, б). От центра эллипса откладывают высоту конуса и получают точку Аксонометрическое черчение - примеры с решением заданий и выполнением задач — вершину конуса. Из точки Аксонометрическое черчение - примеры с решением заданий и выполнением задач касательно к эллипсу проводят образующие.

Для определения касательных к эллипсу выполняют следующие геометрические построения:

  • — из центра эллипса проводят дугу радиусом равным малой полуоси эллипса;
  • — находят точку пересечения этой дуги с окружностью диаметром равным высоте конуса;
  • — из полученной точки проводят прямую параллельно большой оси эллипса. Эта прямая пересекает эллипс в искомых точках касания.

В результате указанных построений получают аксонометрическую проекцию прямого кругового конуса.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Тени в аксонометрических проекциях

Ортогональные проекции, обладая рядом достоинств, имеют также и определенные недостатки, главным из которых является отсутствие наглядности полученных изображений.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Более наглядными, достаточно простыми по начертанию и позволяющими выполнять измерения, являются аксонометрические проекции. Аксонометрический проекции, также как и ортогональные, строятся по принципу параллельного проецирования, но на одну плоскость. На рисунке 6.1, показан принцип получения аксонометрии, точки А.

Точка А связана с системой прямоугольных координат OXYZ. На осях отложены единичные отрезки Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Это натуральные масштабные единицы.

  • S — направление проецирования.
  • Аксонометрическое черчение - примеры с решением заданий и выполнением задач— плоскость аксонометрических проекций (иногда называется картинной плоскостью).

По направлению проецирования, спроецируем единичные отрезки на аксонометрическую плоскость проекций, получим аксонометрическую систему координат O’X’Y’Z’.

Точка Аксонометрическое черчение - примеры с решением заданий и выполнением задач— аксонометрическая проекция точки А,

Точка Аксонометрическое черчение - примеры с решением заданий и выполнением задач— аксонометрия горизонтальной проекции Аксонометрическое черчение - примеры с решением заданий и выполнением задачназываемой вторичной проекцией.

Отрезки Аксонометрическое черчение - примеры с решением заданий и выполнением задач на аксонометрических осях могут быть не равны между собой и не равны е. Они являются единицами измерения по аксонометрическим осям — аксонометрические масштабные единицы.

Отношения аксонометрических единиц к натуральным называются показателями искажения по аксонометрическим осям.

Основной теоремой аксонометрии является теорема «Польке-Шварца»:

Всякий не вырождающийся полный четырехугольник можно считать параллельной проекцией тетраэдра наперед заданной формы.

С доказательством теоремы можно познакомиться в учебнике (1,2).

Эта теорема позволяет установить зависимость между углом проецирования и коэффициентами искажения.  

В зависимости от угла проецирования Аксонометрическое черчение - примеры с решением заданий и выполнением задач аксонометрия делится на два типа: прямоугольная и косоугольная.

Если направление проецирования является перпендикулярным к плоскости аксонометрических проекций — аксонометрия называется прямоугольнойАксонометрическое черчение - примеры с решением заданий и выполнением задач в противном случае — косоугольной Аксонометрическое черчение - примеры с решением заданий и выполнением задач

По показателям искажения аксонометрия делится на три типа.

Если все показатели искажения равны, т.е. U = V = W, аксонометрия называется изометрией.

Если два показателя искажения равны, т.е. Аксонометрическое черчение - примеры с решением заданий и выполнением задач то аксонометрия называется диметрией.

Если все показатели искажения различны, т.еАксонометрическое черчение - примеры с решением заданий и выполнением задач то аксонометрия называется триметрией.

Натуральные показатели искажения по аксонометрическим осям в прямоугольной изометрии одинаковы и равны 0,82. В прямоугольной диметрии U = W = 0,94; V = 0,47.

Однако, при построении аксонометрии натуральные коэффициенты заменяют приведенными, т.е. выраженными целыми числами, что дает увеличение аксонометрического изображения, но на наглядность не влияет.  

Cтандартные виды аксонометрических проекций 

В таблице 6.1 приведены наиболее применяемые стандартные виды аксонометрических проекций.

Таблица 6.1

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построение аксонометрического изображении

Задача 1. Даны ортогональные проекции схематизированного здания (рисунок 6.2). Построить прямоугольную изометрию.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Прежде всего, выбираем положение ортогональных осей для получения более наглядного изображения (рисунок 6.2).

Строим оси аксонометрических проекций под углом 120° (рисунок 6.3). Построение аксонометрии начинаем с плана, т.е. со вторичной проекции. Так как коэффициенты искажения равны 1, то измеряем, координаты X и У каждой точки плана и откладываем их на аксонометрических осях.

Прямые параллельные в ортогональных проекциях будут оставаться параллельными и в аксонометрии.

После построения плана откладываем все высоты параллельно оси Z, т.е. вертикально.

Соединив полученные точки с учетом видимости, получим аксонометрию здания.  

Тени в аксонометрии

Для придания более наглядного и реалистического изображения архитектурным объектам строят тени. Для построения теней задается положение луча света и его вторичной проекции. В принципе направление лучей выбирается произвольным.

На рисунке 6.4 показано построение тени точки А. Через горизонтальную проекцию Аксонометрическое черчение - примеры с решением заданий и выполнением задач проводим луч параллельный вторичной проекции лучаАксонометрическое черчение - примеры с решением заданий и выполнением задач. Через саму точку А — луч параллельный лучу Аксонометрическое черчение - примеры с решением заданий и выполнением задач. В пересечении лучей получаем Аксонометрическое черчение - примеры с решением заданий и выполнением задач — тень точки А падающую на горизонтальную плоскость. Так как аксонометрия является параллельной проекцией, как и ортогональные проекции, то все закономерности, отмеченные в разделе тени в ортогональных проекциях справедливы и для аксонометрии.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Например.

Тень от прямой перпендикулярной плоскости совпадает с направлением проекции луча на эту плоскость.

Тень от прямой параллельной плоскости ей параллельна и равна но величине.

Тень от прямой на плоскость, которую она пересекает, проходит через эту точку пересечения и т.п.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Задача 2. Построим тени аксонометрии схематизировано здания (рисунок 6.5).

Принимаем направление лучей Аксонометрическое черчение - примеры с решением заданий и выполнением задачпод углом 45°. Определяем контур собственной тени при данном освещении.

Для высотной части, как и в ортогональных проекциях, контур собственной тени 1,2,3,4,5. Для пристройки — 6,7,8,9. Сначала строим тени падающие на горизонтальную плоскость, т.е. на землю. Затем строим тень, падающую от высотной части на пристройку, используя метод лучевых сечений. Сечение представляет трапецию. Тень от точки 2 падает на наклонную плоскость. По построению мы видим, что тень от ребра 1,2 падает на землю, затем на стену вертикальную и на крышу, т.е. идет но сечению. Далее, чтобы построить тень от прямой 2,3 на наклонной плоскости, находим точку пересечения прямой 2,3 с наклонной плоскостью и соединяет Аксонометрическое черчение - примеры с решением заданий и выполнением задачс этой точкой. При оформлении чертежа нужно всегда иметь ввиду, что собственная тень всегда светлее падающей.

Задача 3. Построить тени козырька на плоскость стены (рисунок 6.6)Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Козырек призматический. При заданном направлении лучей определяем контур собственной тени 1,2,3,4,5. Точки 1 и 5 лежит на стене, поэтому строим тени точек 2,3,4. Для построения теней используется метод лучевых секущих плоскостей. Через вторичные проекции точек Аксонометрическое черчение - примеры с решением заданий и выполнением задач проводим лучи параллельны Аксонометрическое черчение - примеры с решением заданий и выполнением задач через точки 2,3,4 лучи параллельные Аксонометрическое черчение - примеры с решением заданий и выполнением задач Находим точки пересечения лучей с плоскостью стены. Соединяем полученные точки отрезками прямых. В принципе можно было определить всего лишь одну точку Аксонометрическое черчение - примеры с решением заданий и выполнением задач, т.к. прямые 2,3 и 3,4 параллельны плоскости стены и тени от них им параллельны и равны по величине.

Определение аксонометрической проекции

Аксонометрические изображения обладают большей наглядностью, чем ортогональные проекции, и являются дополнительными к основному проекционному чертежу.

Аксонометрические изображения образуются путем проецирования геометрического объекта вместе с ортогональной системой плоскостей проекций и осей на некую аксонометрическую плоскость, называемую картинной. На рисунке 11.1 изображена схема получения аксонометрических проекций.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Размеры проецируемого тела на аксонометрической проекции искажаются, что учитывается коэффициентами искажения k, m и n. В зависимости от соотношения коэффициентов аксонометрии делятся на изометрию, диметрию и три метрик).

Аксонометрических изображений может быть получено великое множество. Однако, стандартом (ГОСТ 2.317-69) предусмотрены только пять аксонометрических проекций: Аксонометрическое черчение - примеры с решением заданий и выполнением задач

  1. Прямоугольная изометрия;
  2. Прямоугольная диметрия;
  3. Косоугольная фронтальная изометрия;
  4. Косоугольная фронтальная диметрия;
  5. Косоугольная горизонтальная изометрия.

Самое широкое распространение в конструкторской практике получили прямоугольная изометрия, прямоугольная диметрия и косоугольная фронтальная диметрия.

Рассмотрим прямоугольную изометрию. Она строится в аксонометрических осях OX, OY, OZ, располагаемых под углом 120 градусов. Коэффициенты искажения по осям одинаковы и равны 1:1. Это означает, что размеры детали переносятся с проекционного чертежа на аксонометрию без искажения и пересчета.

В диметрических аксонометрических проекциях (прямоугольная диметрия, косоугольная фронтальная диметрия) оси OX, OY, OZ располагаются под различными углами друг к другу. Коэффициенты искажения по осям OX,OZ одинаковы и равны 1:1. Коэффициент искажения по оси OY равен 1:2. Это означает, что размеры детали по оси OY, взятые с проекционного чертежа, необходимо пересчитать, прежде чем переносить на аксонометрию. На рисунке 11.2 показано направление аксонометрических осей в различных видах аксонометрий и вычерчивание окружностей в аксонометрических плоскостях XOZ, XOY, и ZOY.

На рисунке 11.3 показано направление линий штриховки, если на аксонометрической проекции выполнен разрез (чаще всего на аксонометрической проекции выполняют вырез части детали, например, одной четверти).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

На рисунке 11.4 приведены примеры различных аксонометрических проекций детали. На рисунке 11.5 приведен пример чертежа узла в прямоугольной изометрии с вырезом одной четверти. Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Подробное объяснение аксонометрической проекции:

Аксонометрическая проекция, или аксонометрия, дает наглядное изображение предмета на одной плоскости. Слово аксонометрия означает осеизмерение.

Способ аксонометрического проецирования состоит в том, что данную фигуру вместе с осями прямоугольных координат, к которым она отнесена в пространстве, параллельно проецируют на некоторую плоскость, принятую за плоскость аксонометрических проекций (ее называют также картинной плоскостью). При различном взаимном расположении осей координат в пространстве и плоскости аксонометрической проекции, а также при разном направлении проецирования можно получить множество аксонометрических проекций, отличающихся одна от другой направлением аксонометрических осей и масштабом по ним.

В конструкторской документации аксонометрические проекции стандартизованы в ГОСТ 2.317-69. Он предусматривает три частных вида аксонометрических проекций:

  • — ортогональная изометрия,
  • — ортогональная диметрия,
  • — фронтальная (косоугольная) диметрия.

Ортогональная изометрическая проекция

Ортогональная (прямоугольная) изометрическая проекция образуется при прямоугольном проецировании предмета и связанных с ним координатных осей на плоскость аксонометрических проекций, одинаково наклоненную к каждой координатной оси [5].

При таком проецировании все три коэффициента искажений будут равны между собой: Аксонометрическое черчение - примеры с решением заданий и выполнением задач , тогда Аксонометрическое черчение - примеры с решением заданий и выполнением задач, откуда Аксонометрическое черчение - примеры с решением заданий и выполнением задач 0,82. Углы между аксонометрическими осями будут равны 120° (рис.5.1).

При построении изометрической проекции размеры предмета, откладываемые по аксонометрическим осям, необходимо умножать на 0,82.

Поскольку такой перерасчет размеров неудобен, изометрическую проекцию для упрощения выполняют без уменьшения размеров (искажения) по осям x, y, z, т.е. принимают приведенный коэффициент искажения равным единице. При этом увеличение изображения предмета составляет 22% (1/0,82 = 1,22). Каждый отрезок, направленный по осям x, y, z или параллельно им, сохраняет свою величину.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рисунок 5.1 – Расположение Рисунок 5.2 – построение эллипсов осей x, y, z в изометрии в изометрии

На рис. 5.2 показано построение эллипсов, в которые проецируются окружности, лежащие в плоскостях проекций или в плоскостях, параллельным им. Размер большой оси эллипса равен 1,22d, малой – 0,71d, где d – диаметр окружности. В учебных чертежах рекомендуется вместо эллипсов применять овалы, очерченные дугами окружностей. На этом же рисунке показано расположение осей овалов и один из способов построения овалов в прямоугольной изометрической проекции.

Ортогональная диметрическая проекция

Ортогональная диметрическая проекция образуется при прямоугольном проецировании предмета и связанных с ним координатных осей на плоскость аксонометрических проекций, одинаково наклоненную к двум координатным осям [5].

Коэффициенты искажений в диметрической проекции имеют следующие значения: Аксонометрическое черчение - примеры с решением заданий и выполнением задач. Тогда Аксонометрическое черчение - примеры с решением заданий и выполнением задач Аксонометрическое черчение - примеры с решением заданий и выполнением задач.

В целях упрощения построений в соответствии с ГОСТ 2.317 – 69, как и в изометрических проекциях, приведенные коэффициенты искажений по осям x и z принимают равным единице; а по оси y коэффициент искажений равен 0,5. Следовательно, по осям x и z или параллельно им все размеры откладывают в натуральную величину, а по оси y размеры уменьшают вдвое. Увеличение в этом случае составляет 6% (выражается числом 1,06 = 1/0,94).

Расположение осей x и y в диметрической проекции, полученное расчетным путем, показано на рис. 5.3. Ось x наклонена по отношению к горизонтальной линии под углом Аксонометрическое черчение - примеры с решением заданий и выполнением задач, а ось y – под углом Аксонометрическое черчение - примеры с решением заданий и выполнением задач.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рисунок 5.3 – Расположение осей

Рисунок 5.4 – построение эллипсов x, y, z в ортогональной диметрии в ортогональной диметрии

С достаточной для практических целей точностью в прямоугольной диметрии оси x и y можно строить по тангенсам углов: Аксонометрическое черчение - примеры с решением заданий и выполнением задач.

Продолжение оси за центр Аксонометрическое черчение - примеры с решением заданий и выполнением задач является биссектрисой угла Аксонометрическое черчение - примеры с решением заданий и выполнением задач, что также может быть использовано для построения оси y.

Косоугольная фронтальная диметрия

На практике часто бывает полезным построение такой аксонометрической проекции, в которой хотя бы одна из координат плоскостей не искажается. Очевидно, что для выполнения этого условия плоскость проекций должна быть параллельна одной из координатных плоскостей. При этом нельзя пользоваться ортогональным проецированием, так как координатная ось, перпендикулярная указанной координатной плоскости, изобразится точкой и изображение будет лишено наглядности.

Поэтому пользуются косоугольным проецированием, при котором направление оси y выбирают так, чтобы углы между ней и осями x и z, равнялись бы 135° (рис. 5.5), а показатель искажения 0,5 [5].

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рисунок 5.5 – Расположение

Рисунок 5.6 – построение эллипсов осей x, y, z во фронтальной диметрии во фронтальной диметрии

Такую косоугольную аксонометрическую называют фронтальной диметрией. Коэффициенты искажений по осям x и y равны 1, а по оси y коэффициент искажений равен 0,5.

Напомню:

Аксонометрические проекции представляют собой наглядное изображение предмета на плоскости, при котором изображаются все три измерения.

Аксонометрическое проецирование — это параллельное проецирование предмета вместе с координатной системой на некоторую плоскость.

Если проецирующий луч перпендикулярен плоскости проекций — аксонометрия прямоугольная.

Если не перпендикулярен — косоугольная.

Отношение длины аксонометрической проекции отрезка, // аксонометрической оси, к его истинной длине — коэффициент искажения, к — коэффициент искажения по оси ОХ m — коэффициент искажения по оси ОУ n — коэффициент искажения по оси OZ

Если k = m = n — аксонометрия называется изометрией Если равны только два коэффициента (k = m Аксонометрическое черчение - примеры с решением заданий и выполнением задачn ) — диметрия
Прямоугольные проекции
Изометрия (к = m Аксонометрическое черчение - примеры с решением заданий и выполнением задач n)

Действительный коэффициент искажения по всем трем осям равен 0,82. Но на практике применяют коэффициент искажения 1. Поэтому в аксонометрии получаем удлинение 1:0,82 = 1,22 МЛ 1,22:1

ДиметрияАксонометрическое черчение - примеры с решением заданий и выполнением задач

Действительные коэффициенты искажения по осям X и Z — 0,94, по У — 0,47. Принимаем 1 и 0,5 МЛ 1,06 : 1
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическая проекция точки

Все линии, // осям координат в прямоугольной системе, // соответствующим осям в аксонометрии (принцип перпендикулярности не действует)

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построение аксонометрических проекций плоских фигур и геометрических тел

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Окружность в аксонометрии

Окружность в изометрии

Окружность в изометрии — эллипс, оси которого перпендикулярны. В учебных чертежах вместо эллипсов применяют овалы.
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Для построения овала в плоскости H проводят вертикальную и горизонтальную оси овала. Из точки пересечения осей О проводят вспомогательную окружность диаметром d, равным действительной величине диаметра изображаемой окружности, и находят точки Аксонометрическое черчение - примеры с решением заданий и выполнением задачи пересечения этой окружности с аксонометрическими осями Аксонометрическое черчение - примеры с решением заданий и выполнением задач Из точек Аксонометрическое черчение - примеры с решением заданий и выполнением задач пересечения вспомогательной окружности с осью z, как из центров радиусом Аксонометрическое черчение - примеры с решением заданий и выполнением задач проводят две дуги 2 3 и 1 4, принадлежащие овалу. Пересечения этих дуг с осью z дают точки С и D.

Из центра О радиусом ОС, равным половине малой оси овала, засекают на большой оси овала АВ точкиАксонометрическое черчение - примеры с решением заданий и выполнением задач. Точки 1,2, 3 и 4 сопряжений дуг радиусов R и Аксонометрическое черчение - примеры с решением заданий и выполнением задач находят, соединяя точки Аксонометрическое черчение - примеры с решением заданий и выполнением задачс точками Аксонометрическое черчение - примеры с решением заданий и выполнением задачи продолжая прямые до пересечения с дугами 23 и 1 4. Из точек Аксонометрическое черчение - примеры с решением заданий и выполнением задач радиусом Аксонометрическое черчение - примеры с решением заданий и выполнением задач проводят две дуги. Так же строят овалы, расположенные в плоскостях, параллельных плоскостям V и W.

По осям X и У откладываем радиусы окружности от точки О.

БО — большая ось овала МО — меньшая ось овала
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Окружность в диметрии

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Малая ось овала в аксонометрии по направлению всегда совпадает с отсутствующей осью окружности в прямоугольной системе координат, а большая — ей перпендикулярна.

Аксонометрические изображения

При выполнении технических чертежей наряду с изображением предметов в прямоугольных проекциях часто строят и их аксонометрические изображения. Аксонометрия — греческое слово, составленное из двух слов: аксон — осью и метрео — измеряю, что означает измерение по осям.

При построении прямоугольных проекций проецируемый предмет располагают относительно плоскостей проекций так, чтобы направления основных его измерений (длины, высоты и ширины) были параллельны осям проекций. В результате на каждой плоскости проекций изображаются в натуральную величину два измерения, а третье вырождается в точку. Полученные изображения удобны для нанесения на чертеже размеров, но мало
наглядны.

Если предмет расположить в пространстве так, чтобы ни одно из его измерений не было параллельно какой-либо оси проекций, то при параллельном проецировании на некоторую плоскость все три измерения предмета спроецируются на нее с некоторым искажением. Полученное изображение будет не слишком удобным для нанесения размеров, но весьма наглядным.

Сущность рассматриваемого метода аксонометрического проецирования и заключается в том, что предмет жестко связанный с осями прямоугольных координат параллельно проецируется на аксонометрических проекций (рис. 12.1).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 12.1. Проецирование предмета и связанных с ним осей координат на плоскость П’

Направление проецирования не должно совпадать ни с одной из координатных осей.

Различным положениям натуральной системы координат по отношению к аксонометрической плоскости проекций и различным направлениям проецирования соответствуют различные положения аксонометрических осей.

Параллелепипед (см. рис. 12.1) связан с прямоугольной системой координат OXYZ и спроецирован вместе с ней и натуральными масштабными отрезками по направлению S на плоскость П’.

  • S — направление проецирования;
  • П’ — плоскость аксонометрических проекций;
  • х, у ,z — натуральные оси (х±уɪz);
  • ех, еу, ez — натуральные масштабные отрезки (единица измерения общая для всех трех координатных осей ex=ey=ez);
  • х’, у’, z’ — аксонометрические оси;
  • ех, еу ez — аксонометрические масштабы.
  • А’- аксонометрическая проекция точки А, АВ’ — прямой АВ.

Натуральным масштабным отрезкам ех, еу, ez соответствуют аксонометрические масштабные отрезки ех’, еу’, ez’.

В общем случае прямоугольная система координат Oxyz наклонена под произвольным углом к аксонометрической плоскости проекций. При этом натуральные масштабные отрезки спроецируются на картинную плоскость с различными искажениями.

Показателем искажения называют отношение аксонометрического масштаба к соответствующему натуральному:

  • по оси x: u=ex’/ex;
  • по оси y: v=еу’/еу;
  • по оси z: w=ez’/ez.

Виды аксонометрических проекций

В зависимости от соотношения показателей искажения различают три вида аксонометрических проекций:

  1. Изометрия — все три показателя искажения равны между собой: u=v=w;
  2. Диметрия — два показателя искажения одинаковы: u=w≠v;
  3. Триметрия — все три показателя искажения различны: u≠w≠v.

В зависимости от направления проецирования аксонометрические проекции разделяются на прямоугольные и косоугольные.

Если направление проецирования S перпендикулярно П’, то такая проекция называется прямоугольной или ортогональной аксонометрической проекцией, в остальных случаях — косоугольной аксонометрической проекцией.

Прямоугольные (ортогональные) аксонометрические проекции

Наибольшее распространение в технической практике получили именно ортогональные аксонометрические проекции.

Треугольник X’Y’Z’, по которому плоскость аксонометрических проекций пересекает координатные плоскости натуральной системы координат, называется треугольником следов (рис. 12.2).
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 12.2. Треугольник следов:
П’ — аксонометрическая плоскость проекций;
Ox, Oy, Oz — натуральные координатные оси;
S Аксонометрическое черчение - примеры с решением заданий и выполнением задач П’ — направление проецирования, OO’|| S;
X’ Y’ Z’ — треугольник следов;
O’ x’ ,O’ y’ ,O’ z’ — аксонометрические оси

В ортогональной аксонометрии треугольник следов всегда остроугольный, а аксонометрические оси являются его высотами.

Показатели искажения в ортогональной аксонометрии связаны соотношением:
u2 + v2 + w2 = 2.

Показатели искажения в прямоугольной аксонометрии равны косинусам углов наклона натуральных осей к аксонометрической плоскости проекций:

  • по оси x: u — O’ X’/ OX’ — cos α, где а — угол наклона оси x к плоскости П′;
  • по оси y: v — O’ Y’ / OY’ — cosβ, где β — угол наклона оси у к плоскости П′;
  • по оси z: v — O’ Z’ / Oz’ — cosγ, где γ — угол наклона оси z к плоскости П.

Таким образом, в прямоугольной аксонометрии значения всех трех показателей искажения ограничены крайними значениями то 0 до 1.

Прямоугольная изометрическая и диметрическая проекции

Поскольку в изометрии все три показателя искажения одинаковы, то из соотношения u2 + v2 + w2 = 2 получается, что u — v — w — 0. 82. Треугольник следов в этом случае равносторонний, поэтому аксонометрические оси как высоты равностороннего треугольника образуют углы 1200.

На практике пользуются приведенными показателями: т.е. принимают U=V=W=1. Построение приведенной изометрии значительно проще, нежели построение точной, так как аксонометрические координаты равны соответствующим натуральным. При использовании приведенных показателей искажения изображения получаются увеличенными в Аксонометрическое черчение - примеры с решением заданий и выполнением задач = 1,22 раза.

В прямоугольной диметрии два показателя искажения равны u = w, а третий принимают равным u/2, тогда из соотношения u2 + v2 + w2 = 2 следует, что u = w ≈ 0. 94, а v ≈ 0.47. Треугольник следов в этом случае равнобедренный. Если аксонометрическую ось O’z’ расположить на чертеже вертикально, то аксонометрическая ось O’x’ образует с горизонтальной линией угол 7o10’ а ось O’y’ — угол 41025′, тангенсы этих углов равны 1/8 и 1/7 соответственно.

Показатели искажения по аксонометрическим осям O’x’ и O’z’ равны U=V=1, а V=0,5. Изображения в этом случае увеличиваются в Аксонометрическое черчение - примеры с решением заданий и выполнением задач = 1,06.

На рис. 12.3. углы между аксонометрическими осями показаны на примере треугольников осей в соответствии с ГОСТ 2.317-68. На чертеже аксонометрические оси наносят штрихпунктирной линией в соответствии с ГОСТ 2.303-68. Треугольники осей всегда изображают рядом с соответствующей аксонометрической проекцией.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 12.3. Углы между аксонометрическими осями в прямоугольной:
а — изометрии; б — диметрии

Для построения осей прямоугольной изометрии (рис. 12.4,а) строят окружность произвольного радиуса r, затем из нижней точки пересечения ее с вертикальной осью строят дугу того же радиуса. Через центр окружности и полученные точки пересечения проводят оси x и y.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач
Рис. 12.4. Построение осей графически:
а — прямоугольной изометрии;б -прямоугольной диметрии

Углы между аксонометрическими осями в прямоугольной диметрии можно построить следующим образом (рис.12.4, б): для построения оси O’x’откладывают от начала координат O’ по линии горизонта восемь отрезков и на конце последнего отрезка перпендикулярно к нему — один такой отрезок. Для проведения оси O’y’ — по линии горизонта восемь равных отрезков и от конца последнего отрезка перпендикулярно ему семь таких отрезков.

Для построения приведенной аксонометрической проекции точки A(XA,YA,ZA) следует отложить координаты XA, YA, и ZA в направлении соответствующих аксонометрических осей (рис. 12.5). При построении приведенной диметрии координата Y делится пополам.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 12.5. Построение аксонометрической проекции точки:
а — трехкартинный комплексный чертеж;
б — прямоугольная изометрия;
в — прямоугольная диметрия

Пример построения приведенной прямоугольной изометрической и диметрической проекций пирамиды и точек на ее поверхности Данная пирамида связывается с натуральной прямоугольной системой координат Oxyz, для чего на комплексном чертеже наносятся проекции координатных осей (рис. 12.6).

Построение приведенной прямоугольной изометрии пирамиды:
1.    Построить изометрические оси.

2.    Построить изометрические проекции вершин пирамиды:Точка A лежит на оси Ox, поэтому для построения ее проекции достаточно отложить натуральную координату хА =O2A2=O1A1 в положительном направлении изометрической оси x. Для точки C сначала строят вспомогательную точку 1 на оси x, причем расстояние O111 =0’1’ откладывается в отрицательном направлении оси x, затем в положительном направлении оси y откладывают натуральную координату yc=11C1. Остальные вершины строятся аналогично.

3.    Соединить построенные вершины и определить видимость ребер пирамиды.

4.    Точка М лежит в грани ASB, следовательно, принадлежит прямой l, проходящей через вершину S и пересекающей ребро основания BC в точке 2. Для получения изометрической проекции точки M достаточно построить проекцию прямой l ′ и по координате zM построить M’ ∈ l’.

5.    Прямоугольная приведенная диметрия строится аналогично, с учетом коэффициента искажения по оси y 0,5.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 12.6. Аксонометрические проекции пирамиды:
а — ортогональный чертеж;
б — прямоугольная изометрия;
в — прямоугольная диметрия

Аксонометрические проекции окружности

В общем случае окружность проецируется на аксонометрическую плоскость проекций в виде эллипса, большая ось (БОЭ) которого, в точной аксонометрии, равна диаметру окружности d, а малая (МОЭ) — d cos α, где α — угол наклона плоскости окружности к аксонометрической плоскости проекций.

Если окружность лежит в координатной плоскости или параллельна ей, то на аксонометрическом чертеже большая ось эллипса, изображающего окружность, располагается перпендикулярно той аксонометрической оси, которая отсутствует в наименовании плоскости окружности (рис. 12.7).

Например, если окружность расположена в плоскости П1 (xOy), в аксонометрии большая ось эллипса перпендикулярна оси z.
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Размеры осей эллипсов в прямоугольных приведенных изометрии и диметрии даны в табл.1 (d — диаметр окружности).

Таблица 1 Размеры осей эллипсов

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Определить размеры осей эллипса можно графически, пользуясь следующими треугольниками:

Изометрия : Строятся два прямоугольных треугольника с общим катетом 100мм и катетами 72мм и 122мм (рис. 12.8,а). На большем (горизонтальном) катете треугольника откладывается значение диаметра (радиуса) окружности и строится подобный треугольник.

  • Меньший катет треугольника со сторонами 100 на 122 определяет большую ось эллипса.
  • Меньший катет треугольника со сторонами 100 на 72 определяет малую ось эллипса.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 12.8. Треугольники для определения размеров осей эллипсов:
а — прямоугольная изометрия;
б — прямоугольная диметрия

Диметрия: Строятся три прямоугольных треугольника с общим катетом 100мм, на котором откладывается значение диаметра (радиуса) окружности (рис. 12.8,б).

Меньший катет треугольника со сторонами 100 на 106 определяет большую ось эллипса для всех аксонометрических плоскостей.

Меньший катет треугольника со сторонами 100 на 94 определяет малую ось эллипса для плоскости П2 (xOz).

Меньший катет треугольника со сторонами 100 на 35 определяет малую ось эллипса для плоскости П1 (xOy) и П3(zOy).

Построение эллипсов по восьми точкам

Построение эллипса как аксонометрической проекции окружности начинается с определения положения центра и направления большой и малой осей эллипса. Размеры большой и малой осей рассчитывают или определяют графически и откладывают на чертеже A’B’ большая ось, CD’ — малая. Затем через центр эллипса проводят вспомогательные прямые в направлении аксонометрических осей. В изометрии в направлении осей откладывается натуральный диаметр окружности 1-2 и 3-4.Полученные восемь точек соединяют плавной лекальной кривой. Построение изометрического эллипса по восьми точкам показано на рис. 12.9.
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис.    12.9. Построение изометрического эллипса по восьми точкам:
А’В’= 1,22d- большая ось эллипса;
CD’=0,7d- малая ось эллипса;
1′-2′ — размер по оси x, равный диаметру окружности d;
3′-4′ — размер по оси y, равный диаметру окружности d

При построении диметрических эллипсов учитывается коэффициент искажения 0,5  направлении оси y. Построение диметрических эллипсов по восьми точкам показано на рис. 12.10. 

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 12.10. Построение диметрического эллипса по восьми точкам:
а — для окружностей в плоскостях Π1(xOy) и П3(zOy): БОЭ= 1,06 d-большая ось эллипса; МОЭ= 0,35 d-малая ось эллипса; 1′-2’=d-размер по оси x; 3′-4’=0,5d-размер по оси у;
б — для окружностей в плоскости П2(xOz): БОЭ=1,06 d-большая ось эллипса; МОЭ=0,94 d-малая ось эллипса; 1′-2’=d-размер по оси x; 3′-4’=d-размер по оси z.

Если восьми точек недостаточно, эллипс можно построить по двум осям (рис. 12.11). Этот способ можно применять и для построения эллипсов с произвольными размерами осей, например, для построения проекций окружности, лежащей в проецирующей плоскости.
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 12.11. Построение эллипса по двум осям: 
A’B’ — большая ось эллипса;
C’D’ — малая ось эллипса

Строят две окружности с диаметрами, равными большой и малой оси эллипса, и делят их радиальными отрезками нал частей. Затем из каждой точки пересечения большой окружности проводят вертикальные отрезки в сторону большой оси, а из точек пересечения с малой окружностью -горизонтальные отрезки в сторону от малой оси. Точки пересечения отрезков и являются точками эллипса. Полученные точки соединяют плавной лекальной кривой.

Построение овалов

Построение эллипсов требует применения лекал. На практике обычно вместо эллипсов вычерчивают четырехцентровые овалы.

Существует два способа построения четырехцентровых изометрических овалов. Для построения четырехцентрового овала по двум осям (рис. 12.12,а) из центра овала строят две окружности диаметрами равным и большой и малой осям эллипса. Точка пересечения большой окружности с направлением малой оси — центр большой дуги O’, радиус большой дуги R=O’D’. Точка 1′ — центр малой дуги, радиус малой дуги -r=1’A’. Точки 3’4′ — точки сопряжения. Затем строят дуги радиусов R и r между точками сопряжения.

Можно построить четырехцентровой овал используя только диаметр проецируемой окружности (рис. 12.12,б). Из центра овала строят направления большой и малой осей и окружность диаметром, равным диаметру проецируемой окружности. Из точки O’ пересечения окружности с направлением малой оси делят окружность на шесть частей.O’ -центр большой дуги овала. Отрезок O’1’=O’4’=R — радиус большой дуги, Точка O» пересечения отрезка O’4′ с направлением большой оси — центр малой дуги, отрезок O»4’=r- радиус малой дуги. Точки 1’2’3’4′ точки сопряжения. Затем строят дуги соответствующих радиусов между точками сопряжения.
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 12.12. Построение четырехцентровых овалов в изометрии:
а — по двум осям:                      б- по диаметру окружности:
A B’ -большая ось эллипс     AB’ — большая ось эллипса;
CD’-малая ось эллипса;          CD’- малая ось эллипса;
O’ -центр большой дуги;        O’ — центр большой дуги;
O» -центр малой дуги             O» — центр малой дуги;

Диметрические эллипсы также можно заменить четырехцентровыми овалами. Построение диметрических овалов для окружностей в плоскостях, параллельных xOy и zOy показано на рис. 12.13.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 12.13. Построение диметрического овала в плоскости xOy:
A’B’ — большая ось эллипса;
C’D’ — малая ось эллипса;
O’ — центр большой дуги;
1′ — центр малой дуги;
R=O’D’ — радиус большой дуги;
r=1’A’ — радиус малой дуги;
2′ — точка сопряжения

Для построения овала, изображающего окружность в плоскостях, параллельных xOz,строят большую и малую оси и вспомогательную окружность, диаметром 0,2d (рис. 12.14). Точка 4′ — центр большой дуги, R=O’D’ — радиус большой дуги. Точка 1 ‘ — центр малой дуги, r=1 A’ — радиус малой дуги. Затем строят дуги радиусов R и r между точками сопряжения 5’6’7’8′.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 12.14. Построение диметрического овала в плоскости xOz:
A’B’ — большая ось эллипса;
C’D’ — малая ось эллипса

Графической работы

Прежде чем приступить к выполнению графической работы, необходимо изучить или повторить теоретическую часть курса.

Студент выполняет тот вариант задания, номер которого соответствует сумме двух последних цифр номера зачетной книжки. Например, если номер зачетной книжки студента 788133, то он во всех контрольных работах выполняет шестой вариант задания.

Каждая контрольная работа представляется на рецензию в полном объеме (необходимое число чертежей с пояснительными записками к ним). На каждую контрольную работу преподаватель кафедры составляет рецензию, в которой кратко отмечает достоинства и недостатки работы. Контрольную работу вместе с рецензией возвращают студенту, и она хранится у него до экзамена. Пометки преподавателя должны быть приняты студентом к исполнению. Если работа не зачтена, преподаватель в рецензии указывает, какую часть контрольной работы надо переделать, или выполнить всю контрольную работу вновь. На повторную рецензию следует высылать всю контрольную работу полностью. К выполнению следующей контрольной работы можно приступать, не ожидая ответа на предыдущую. Контрольные работы представляются на рецензию строго в сроки, указанные в учебном графике или определенные преподавателем.

Графические работы выполняются на листах чертежной бумаги формата А3 или А4(ГОСТ 2.301-68, см. табл.П1, рис. П1). Первая страница должна быть оформлена по образцу (см. рис. П2).

При графическом решении задач точность ответа зависит не только от выбора правильного пути ее решения, но и от точности выполнения геометрических построений, поэтому при выполнении графических работ необходимо пользоваться чертежными инструментами. Все основные и вспомогательные построения должны быть сохранены, все точки и линии на чертеже — обозначены, при этом обозначения следует делать в процессе решения.

Все надписи, буквенные и цифровые обозначения выполняются шрифтом чертежным в соответствии с ГОСТ 2.304-68 (см. рис. П4, П5). Линии видимого контура обводят сплошной толстой основной линией толщиной s=0,8-1mm, линии построений — сплошной тонкой линией толщиной от s/3 до s/2, осевые и центровые линии — штрихпунктирной линией, линии невидимого контура — штриховой в соответствии с ГОСТ 2.303-68 (см. табл. П2). Точки на чертеже вычерчиваются в виде окружностей диаметром 1,5…2мм.
Листы выполненной контрольной работы складывают до формата А4 (см. рис. П3), и высылают в конверте и на рецензию.

Построение линии пересечения треугольных пластин

Задание : Построить линию пересечения треугольных пластинАВСи DEK. Определить натуральную величину треугольника ABC.Данные по вариантам приведены в табл. 14.1.Графическую работу выполнить на листе чертежной бумаги формата А3.

Порядок выполнения работы:

1.    Построить в тонких линиях двухкартинный комплексный чертеж треугольных пластин по заданным координатам вершин(рис. 14.1,а).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.1. Двухкартинный комплексный чертеж пластин:
а — наглядное изображение;б — комплексный чертеж

2.    Пластины представляют собой ограниченные участки плоскостей общего положения α(ABC) и β(DEK) (рис. 14.1,б), следовательно, задача сводится к определению линии их пересечения. Линией пересечения плоскостей является прямая, для однозначного определения которой достаточно двух точек.

Первая точка — точка N(рис. 14.2), определяется как точка пересечения стороны DK треугольника DEK с плоскостью α(ABC) (первая позиционная задача, см.пп.8.8):
•    прямую DK заключить    во    вспомогательную фронтальнопроецирующую плоскость γ(γ2) (см. рис. 14.2);

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.2.Построение первой точки линии пересечения

•    определить линию пересечения а вспомогательной плоскости γ(γ2) и плоскости α(ABC). Линия а строится по двум точкам:
точка 1 = γ(γ2) ×AB;
точка 2 = γ(γ2) ×AC.

•    определить точку пересечения прямых а (а1, а2DK:
N1 =D1K1 × а1;
N2 =N1N2 × D2K2.

Вторую точку линии пересечения — точку M определить аналогично (рис. 14.3).При необходимости полученную линию нужно ограничить в области перекрытия проекций. Соединив полученные точки и N, получить линию пересечения двух треугольных пластин.
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.3.Построение второй точки линии пересечения

3.    Определить видимость сторон методом конкурирующих точек (см.пп.7),считая пластины непрозрачными (рис. 14.4).

На горизонтальной плоскости конкурирующие точки находятся в точке наложения проекций сторон A1C1 и D1E1. При этом точка 5 принадлежит стороне AC, а точка 6 — стороне DE. Фронтальная проекция точки 6 лежит выше (ее высота больше, чем высота точки 5).Сторона DE видима полностью, а сторона AC невидима между точками, конкурирующими со сторонами DK и DE.Аналогично определить видимость остальных сторон. Сторона EK невидима между точками, конкурирующими со сторонами AB и BC.Сторона DK невидима от точки N до точки, конкурирующей со стороной BC. Сторона BCвидима полностью, а сторона AB невидима от точки Mдо точки, конкурирующей со стороной DE.

На фронтальной плоскости конкурирующие точки находятся в точке наложения проекций прямых A2B2 и D2K2. При этом точка 1 принадлежит прямой AB, а точка 7 — прямой DK. Горизонтальная проекция точки 7 лежит ниже (ее глубина больше, чем глубина точки 1), следовательно, на П2 видима сторона DK до точки N и за пределами общего объема пластин.
Сторона АВ невидима между точками и 1.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.4.Определение видимости

Аналогично определить видимость остальных сторон. Стороны DE, AB и ВС видимы полностью. Сторона EK невидима между точками, конкурирующими со сторонами AB и BC.

4.    Определить натуральную величину плоскости АВС и показать линию MN — линию его пересечения с плоскостью DEK.
Натуральную    величину плоскости АВС    определить способом плоскопараллельного движения(см. пп.11.2). Данная задача решается в два этапа: сначала плоскость переводится из общего положения в проецирующее, а затем — в положение плоскости уровня.
Сначала выполняется плоскопараллельное движение плоскости α(ABC) относительно плоскости проекций П1 (рис. 14.5):
•    продлить линию MN до пересечения со стороной AC и получить линию ML;
•    через точку Cпровести горизонталь h (h1,h2 )в плоскости ABC;
•    горизонтальную проекцию h/1 вычертить без изменения на свободном поле чертежа, расположив ее так, как требуется для решения задачи, а именно чтобы она стала проецирующей прямой:
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.5.Преобразование плоскости α(ABC) общего положения в положение проецирующей плоскости

•    построить новую горизонтальную проекцию плоскости α/1(A/1B/1C/1), конгруэнтную горизонтальной проекции α1(A1B1C1), показав на ней линию пересечения MN:

|A/1B/1| = |A1B1|;    |A/1C/1| = |A1C1|; |B/1C/1| = |B1C1|;
Аксонометрическое черчение - примеры с решением заданий и выполнением задачA/1B /1C/1=Аксонометрическое черчение - примеры с решением заданий и выполнением задачA1B1C1; Аксонометрическое черчение - примеры с решением заданий и выполнением задачB/1A/1C/1=Аксонометрическое черчение - примеры с решением заданий и выполнением задачB1A1C1; Аксонометрическое черчение - примеры с решением заданий и выполнением задачA/1C/1B/1=Аксонометрическое черчение - примеры с решением заданий и выполнением задачA1C1B1;
|A/1F /1| = |A1F1|; |A/1F /1| = |A1F1|;
|A/1M /1| = |A1M1|; |A/1B /1| = |A1B1|;
|A/1L /1| = |A1L1|; |A/1C/1| = |A1C1|;
|L/1N /1| = |L1N1|; |N/1M /1| = |N1M1|;

•    фронтальные проекции точек A2, B2, C2 перемещаются по прямым -следам плоскостей движения точек σ2, η2 и μ2:
σ2∣∣η2∣∣μ2;    σ2Аксонометрическое черчение - примеры с решением заданий и выполнением задачA 1A2;

•    определить новую фронтальную проекцию плоскости α’2(A/2B /2C/2по линиям связи на основании новой горизонтальной проекции плоскости α’1(A/1B /1C/1);

Вторым плоскопараллельным движением, но уже относительно плоскости проекций П2, плоскость α(ABC) преобразуется в горизонтальную плоскость уровня (рис. 14.6):
• построить новую фронтальную проекцию плоскости α//2(A//2B//2C//2 в виде горизонтального отрезка на свободном поле чертежа, для которого |C//2A//2| = |C/2A/2| и |A//2B//2|= |A/2B/2|
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.6. Преобразование плоскости α(ABC) общего положения в положение плоскости уровня

•    горизонтальные проекции точек A/1, B /1,C/1 перемещаются по прямым — следам плоскостей движения точек λ1, v1 и φ1:
λ1∣∣v1∣∣φ1;    λ1Аксонометрическое черчение - примеры с решением заданий и выполнением задачA//1A//2;
•    определить новую горизонтальную проекцию плоскости α//1(A//1B//1C//1 ) по линиям связи на основании новой фронтальной проекции плоскости α//2(A//2B//2C//2 ).
Полученная горизонтальная проекция плоскости α//1(A//1B//1C//1 ) определяет ее натуральную величину: ∆ A//1B//1C//1|ABC|.
5.    Обвести в соответствии с типами линий, оформить работу. Пример выполнения графической работы приведен на рис. 14.7.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.7. Пример выполнения графической работы 1

Таблица 14.1 Задания для графической работы 1 (координаты и размеры, мм)

№ вар.

Xa

Уа

Za

Xb

Ув

Zb

Xc

Ус

Zc

Xd

yD

Zd

Xe

Уе

Ze

Xk

Ук

zκ

1

117

90

9

52

25

79

0

83

48

68

110

85

135

19

36

14

52

0

2

120

90

10

50

25

80

0

85

50

70

110

85

135

20

35

15

50

0

3

115

90

10

52

25

80

0

80

45

64

105

80

130

18

35

12

50

0

4

120

92

10

50

20

75

0

80

46

70

115

85

135

20

32

10

50

0

5

117

9

90

52

79

25

0

48

83

68

85

110

135

36

19

14

0

52

6

115

7

85

50

80

25

0

50

85

70

85

110

135

20

20

15

0

50

7

120

10

90

48

82

20

0

52

82

65

80

110

130

38

20

15

0

52

8

116

8

88

50

78

25

0

46

80

70

85

108

135

36

20

15

0

52

9

115

10

92

50

80

25

0

50

85

70

85

110

135

35

20

15

0

50

10

18

10

90

83

79

25

135

48

82

67

85

110

0

36

19

121

0

52

11

20

12

92

85

89

25

135

50

85

70

85

110

0

35

20

120

0

52

12

15

10

85

80

80

20

130

50

80

70

80

108

0

35

20

120

0

50

13

16

12

88

85

80

25

130

50

80

75

85

110

0

30

15

120

0

50

14

18

12

85

85

80

25

135

50

80

70

85

110

0

35

20

120

0

50

15

18

90

10

83

25

79

135

83

48

67

110

85

0

19

36

121

52

0

16

18

40

75

83

117

6

135

47

38

67

20

0

0

111

48

121

78

86

17

18

75

40

83

6

107

135

38

47

67

0

20

0

48

111

121

86

78

18

117

75

40

52

6

107

0

38

47

135

0

20

86

48

111

15

68

78

Проекции пирамиды

Задание: Построить проекции пирамиды, основанием которой является треугольник ABC, а ребро SA определяет высоту H пирамиды. Данные по вариантам приведены в табл. 14.2.

Порядок выполнения работы:
6.    Построить оси координат. По координатам вершин построить основание пирамиды ABC в тонких линиях (рис. 14.8).
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.8. Построение основания пирамиды

7. В плоскости основания построить горизонталь h(h1h2)и фронталь Аксонометрическое черчение - примеры с решением заданий и выполнением задач (рис. 14.9). 

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.9. Построение фронтали и горизонтали в плоскости основания

8. Высота пирамиды является перпендикуляром, проведенным из точки A к основанию пирамиды (см. пп. 10.3). Горизонтальную проекцию высоты пирамиды провести из точки A1 перпендикулярно горизонтальной проекции горизонтали плоскости h1, а фронтальную проекцию — из точки A2 перпендикулярно фронтальной проекции фронтали плоскости Аксонометрическое черчение - примеры с решением заданий и выполнением задач (рис. 14.10).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.10 Построение высоты пирамиды

9. Определить натуральную величину высоты пирамиды (рис. 14.11).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.11. Определение натуральной величины высоты пирамиды

Поскольку высота пирамиды является прямой общего положения, то способом вращения вокруг проецирующей прямой поворачиваем ее до положения линии уровня. Для этого на проекции перпендикуляра взять произвольную точку M. Прямую AM повернуть вокруг горизонтально-проецирующей прямой iдо положения фронтали:

A1M1‘ ||х12; M2M2Аксонометрическое черчение - примеры с решением заданий и выполнением задачM1M2.

На прямой A2M2‘ отложить натуральную величину высоту пирамиды |A2S2|=85мм. Выполнить обратные преобразования и получить вершину пирамиды точку S.

10.    Построить ребра пирамиды и определить видимость способом конкурирующих точек (рис. 14.12).
На П1 в качестве конкурирующих точек выбраны точки 1 и 2: 1 ∈(AC), 2∈(SB). Фронтальная проекция точки 2 расположена выше (z2>z1), поэтому ребро SB будет видимо, а ребро AC невидимо. Ребра SA, AB и BC будут также видимы.
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.12. Определение видимости

На П2 в качестве конкурирующих точек выбраны точки 3 и 4: 3 ∈ (AB), 4(SC) . Горизонтальная проекция точки 4 расположена ниже (y4>y3), поэтому ребро SC будет видимо, а ребро AB невидимо. Ребра SA, SB и BC будут также видимы.

11.    Обвести в соответствии с типами линий, оформить работу. Пример выполнения графической работы приведен на рис. 14.13.
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.13. Пример выполнения графической работы 2

Таблица 14.2 Задания для графической работы 2 (координаты и размеры, мм)

№ варианта

Xa

Уа

Za

Xb

Ув

Zb

Xc

Ус

Zc

H

1

117

90

9

52

25

79

0

83

48

85

2

120

90

10

50

25

80

0

85

50

85

3

115

90

10

52

25

80

0

80

45

85

4

120

92

10

50

20

75

0

80

46

85

5

117

9

90

52

79

25

0

48

83

85

6

115

7

85

50

80

25

0

50

85

85

7

120

10

90

48

82

20

0

52

82

85

8

116

8

88

50

78

25

0

46

80

85

9

115

10

92

50

80

25

0

50

85

85

10

18

10

90

83

79

25

135

48

83

85

11

20

12

92

85

80

25

135

50

85

85

12

15

10

85

80

80

20

130

50

80

85

13

16

12

88

85

80

25

130

50

80

80

14

18

12

85

85

80

25

135

50

80

80

15

18

90

10

83

25

79

135

83

48

80

16

18

40

75

83

117

6

135

47

38

80

17

18

75

40

83

6

107

135

38

47

80

18

117

75

40

52

6

107

0

38

47

80

Проекции сферы с отверстием

Задание: Построить три проекции поверхности сферы со сквозным отверстием. Графическая работа выполняется на листе чертежной бумаги формата А3 (см. рис. П1).

Отверстие в поверхности сферы (рис. 14.14) выполнено четырьмя проецирующими плоскостями. Фронтальная проекция отверстия задана, необходимо построить горизонтальную и профильную проекции.
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.14. Сфера с отверстием

Порядок выполнения работы:
1.    По заданным размерам построить в тонких линиях трехкартинный комплексный чертеж поверхности сферы и фронтальную проекцию отверстия.
2.    Определить недостающие проекции точки А и опорные точки 1 и 2 (рис. 14.15).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.15. Определение опорных точек

3.    Построить следы секущих плоскостей (см. рис. 14.15). Построить проекции сечений сферы каждой плоскостью. Все сечения представляют собой окружности, которые проецируются на разные плоскости проекций в виде окружностей, отрезков или эллипсов:

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.16. Построение сечений

•    Сечение поверхности сферы плоскостью α(α2) представляет собой окружность, которая проецируется на фронтальную и профильную плоскости проекций в виде отрезков, а на горизонтальную — в виде окружности l(l1,l2) с центром в точке О(О12) радиусом r. Граница отверстия определится дугой DD’ (рис. 14.16).
•    Сечение поверхности сферы плоскостью β(β2) представляет собой окружность, которая проецируется на фронтальную и горизонтальную плоскости проекций в виде отрезков, а напрофильную — в виде окружностиm(m1,m2) с центром в точке О(О12) радиусом r´. Граница отверстия определится дугами CD иC’D’(см. рис. 14.16).
•    Построение сечения поверхности сферы плоскостью γ(γ2аналогично сечению плоскостью α(α2). Граница отверстия определится дугами BC и В’С’ (см. рис. 14.16).
•    Сечение поверхности сферы плоскостью δ(δ2) представляет собой окружность, которая проецируется на фронтальную плоскость проекций в виде отрезка, а напрофильнуюи горизонтальную — в виде эллипсов. Граница отверстия определится дугами эллипсов CD иC’D’(рис. 14.17).
Аксонометрическое черчение - примеры с решением заданий и выполнением задач
Рис. 14.17. Построение эллипса

4.    Определить видимость (рис. 14.18).На фронтальной проекции видны все границы отверстия. На горизонтальной проекции видна часть границы отверстия, расположенная выше точек 3 и 4. На профильной — правее точек 5 и 6.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.18. Определение видимости 

5.    Выполнить обводку. Образец выполнения графической работы представлен на рис. 14.19.

Таблица 14.3 Задания для графической работы 3 (координаты и размеры, мм)

№ вар.

Xo

yo

Zo

Xa

Уа

Za

Xb

Ув

Zb

Xc

Ус

Zc

Xd

yD

Zd

R

1

70

58

62

118

35

56

95

45

95

45

35

46

2

70

60

60

118

35

56

95

44

95

44

35

46

3

70

60

58

120

35

58

95

44

95

44

35

18

4

70

60

58

120

36

56

94

42

94

42

36

48

5

69

58

60

116

36

58

94

45

94

45

36

47

6

72

60

58

116

36

60

92

42

92

42

36

47

7

72

58

60

120

34

60

92

42

92

42

34

48

8

72

58

58

122

34

60

90

40

90

40

34

45

9

74

62

60

122

34

55

90

40

90/

40

34

45

10

69

58

60

20

36

81

94

94

94

94

36

47

11

74

62

58

20

36

80

92

94

92

94

36

47

12

72

62

62

20

35

80

92

92

92

92

36

48

13

72

60

62

22

35

82

90

92

90

92

35

48

14

70

60

60

18

35

82

90

90

90

90

35

48

15

70

60

58

18

34

82

94

92

94

90

34

50

16

72

62

58

20

34

84

94

96

94

96

34

60

17

70

62

60

18

32

84

90

96

90

96

32

50

18

68

60

60

20

32

86

92

95

92

95

32

50

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.19. Пример выполнения графической работы 3

Сечение комбинированной поверхности проецирующей плоскостью

Задание: Построить сечение комбинированной поверхности вращения плоскостью фронтально-проецирующей плоскостью α(α2). Графическая работа выполняется на листе чертежной бумаги формата А4 (см. рис. П1).
Комбинированная поверхность состоит из полусферы и конуса (рис. 14.20). В сечении полусферы получается дуга окружности, а в сечении конуса -часть эллипса (см. пп. 8.16).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.20. Сечение поверхности плоскостью

Порядок выполнения работы:

1.    Построить в тонких линиях двухкартинный комплексный чертеж поверхности и след секущей плоскости.

2.    Определить опорные точки (рис. 14.21):
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.21. Определение опорных точек

•    1 — точка пересечения плоскости α(α2) с очерковой образующей полусферы;
•    2 и 3 — точки пересечения плоскостиα(α2) с плоскостью нижнего основания полусферы;
•    4 и 5 — точки пересечения плоскости α(α2) с плоскостью верхнего основания конуса;
•    6 и 7 — точки пересечения плоскости α(α2) с плоскостью нижнего основания конуса;
•    точки 8 и 9, лежащие на образующих, проекции которых совпадают с осью конуса также являются опорными. Эти точки строятся при помощи вспомогательной плоскости уровня γ(γ2), которая рассекает поверхность конуса по линии n,
n = Фк Аксонометрическое черчение - примеры с решением заданий и выполнением задач γ(γ2), 12 = γ2; n — окружность радиуса r,
а плоскость α(α2) — по фронтально-проецирующей прямой p:
p = α(α2)Аксонометрическое черчение - примеры с решением заданий и выполнением задач γ(γ2); p Аксонометрическое черчение - примеры с решением заданий и выполнением задач П2; n × p = 4, 5.
3.    Определить промежуточные точки (рис 14.22). Для этого провести вспомогательную плоскость уровня δ(δ2) между опорными точками.
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.22. Определение промежуточных точек и видимости

Эта плоскость рассекает поверхность сферы по линии m:

m = Фк Аксонометрическое черчение - примеры с решением заданий и выполнением задач γ(γ2); l22 ;m — окружность радиуса r‘,

а плоскость α(α2) — по фронтально-проецирующей прямой q:

q= α(α2) Аксонометрическое черчение - примеры с решением заданий и выполнением задач γ(γ2); qАксонометрическое черчение - примеры с решением заданий и выполнением задачП2; m× q= 10, 11.
Точки 12 и 13 определить аналогично, с помощью вспомогательной плоскости σ(σ2). Полученные точки соединить плавной лекальной кривой s.

4.    Определить видимость линии пересечения s относительно поверхности (см. рис. 14.22). В данном случае видимость определяется только на горизонтальной плоскости проекций. Границей видимости является основание полусферы, таким образом, видимы только точки 1, 2, 3, 10 и 11, лежащие на поверхности полусферы. Точки 2 и 3 — точки смены
видимости.
5.    Определить натуральную величину плоскостей проекций (см. пп. 11.1).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.23. Определение натуральной величины сечения

В данном случае выполняется замена горизонтальной плоскости проекций П1 на плоскость П4(рис. 14.23). Плоскость П4 выбирается так, чтобы в системе плоскостей П14 плоскость азаняла положение плоскости уровня:
•    Провести ось х 14 параллельно фронтальному следу плоскости;
•    Построить вспомогательные точки A, B, C, D и Е на оси симметрии сечения;
•    Провести линию связи A2A4 перпендикулярно оси х14 и отложить на ней расстояние yA от оси х14;
•    Точки 6 и 7 лежат на линии связи A2A4. Для построения точки 6 отложить по линии связи A2Aрасстояние y6 от оси х14;
•    Аналогично построить точки 14, 124, 84, 44,24, 104;
•    Точки 74, 134, 94, 54, 44, 114 строятся симметрично относительно оси сечения;
• Соединить полученные точки плавной лекальной кривой.
6. Нанести штриховку сплошными тонкими линиями под углом 45°. Если какие-либо линии сечения наклонены под углом, близким к 45° допускается наносить штриховку под углом 30° или 60°. Пример выполнения графической работы приведен на рис. 14.24.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.24. Пример выполнения графической работы 4

Таблица 14.4 Задания для графической работы 4 (координаты и размеры, мм)

Аксонометрическое черчение - примеры с решением заданий и выполнением задач Вариант 1: a=20; φ=60° Вариант 2: a=15; φ=45° Вариант 3: a=35; φ=60°
Аксонометрическое черчение - примеры с решением заданий и выполнением задач Вариант 4: a=15; φ=60° Вариант 5: a=5; φ=45° Вариант 6: a=35; φ=60°
Аксонометрическое черчение - примеры с решением заданий и выполнением задач Вариант 7: a=20; φ=60° Вариант 8: a=15; φ=45° Вариант 9: a=35; φ=60°
Аксонометрическое черчение - примеры с решением заданий и выполнением задач Вариант 10: a=25; φ=60° Вариант 11: a=30; φ=75° Вариант 12: a=15; φ=45°
Аксонометрическое черчение - примеры с решением заданий и выполнением задач Вариант 13: a=25; φ=60° Вариант 14: a=10; φ=60° Вариант 15: a=5; φ=45°
Аксонометрическое черчение - примеры с решением заданий и выполнением задач Вариант 16: a=20; φ=60° Вариант 17: a=15; φ=45° Вариант 18: a=20; φ=45°

Пересечение поверхностей

Задание: Построить линию пересечения поверхностей прямого кругового конуса и прямого кругового цилиндра (рис. 14.25).Графическая работа выполняется на листе чертежной бумаги формата А4. 

В данном примере линия пересечения поверхностей на плоскости П2 совпадает с очерком цилиндра, поэтому фактически остается построить линию пересечения на плоскости П1

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.25. Пересечение поверхностей:
а — наглядное изображение; б — комплексный чертеж

Порядок выполнения работы:
1.    По заданным размерам построить горизонтальную и фронтальную проекции поверхностей в тонких линиях (см. рис. 14.26, б).
2.    Определить опорные точки (рис. 14.26).
Конус и цилиндр имеют общую плоскость симметрии μ(μ1), параллельную плоскости П2. Поэтому точки 1, 5,5 ´u 6 линии пересечения получаются как результат пересечения очерковых образующих конуса и цилиндра.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.26. Определение опорных точек линии пересечения поверхностей

Также к опорным точкам относятся точки 3 и 3΄ (рис. 14.27). Они являются точками смены видимости линии пересечения на горизонтальной плоскости проекций.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.27. Определение точек смены видимости линии  пересечения поверхностей

Для определения этих точек нужно провести горизонтальную плоскость уровня β(β2). Плоскость β(β2) пересекает цилиндр по образующей — прямойb, а конус — по окружности n, радиусом r:

b(b1 ,b2)=Фц ∩β(β2); n(n1 ,n2)=Фк∩β(β2).

Построив горизонтальные проекции прямой bи окружностиn, определить точки их пересечения 3 и 3′:
31, 3′1=b1×n1;32, 3′2=31322.

3.    Промежуточные точки линии пересечения также определяют с помощью горизонтальных плоскостей уровня.
Фронтальные плоскости уровня пересекают поверхность прямого кругового конуса по гиперболам, следовательно, для решения данной задачи нужно применить горизонтальные плоскости уровня, которые рассекают обе поверхности по простым линиям: конус — по окружностям, а цилиндр — по
прямым линиям.

Более подробно разберем построение точек 2 и 2′ (рис. 14.28).Для их определения надо пересечь обе поверхности вспомогательной горизонтальной плоскостью уровня α(α2). Плоскость α(α2пересекает конус по окружности m радиусом r´, а цилиндр — по прямой a:

m(m1, m2κα(α2);a(a1, a2цα(α2).

Построив горизонтальные проекции прямой а и окружности m, определить точки их пересечения C и C’:
21, 2′1= a1×m1;    21, 2′1=2122 α2.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.28. Определение промежуточных точек линии  пересечения поверхностей

Аналогичным образом определяют точки 4 и 4/, формирующие линию пересечения (см. рис. 14.28). Они получены с помощью горизонтальной плоскости уровня γ(γ2)

Количество вспомогательных плоскостей должно быть достаточным для определения характера линии пересечения. Пределы этих плоскостей по высоте определяют высшая и низшая опорные точки линии пересечения поверхностей. 

4. Последовательно соединить одноименные проекции полученных точек тонкой плавной лекальной кривой, причем полученная линия не должна выходить за пределы области перекрытия проекций данных поверхностей (рис. 14.29). 

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.29. Получение линии пересечения поверхностей

5.    Определить видимость линии пересечения поверхностей и их очерковых образующих (рис. 14.30).
На горизонтальной плоскости проекций видимость линии пересечения определяется по поверхности цилиндра. Видимы будут те точки линии пересечения, которые на П2 расположены выше плоскости β2 — точки 1, 2,2′, 3 и 3‘. Точки 3 и За являются точками смены видимости линии пересечения на П1 Очерковая образующая цилиндра будет невидима между точками 3 и 3′. Поскольку основание конуса расположено ниже цилиндра, оно будет невидимо под проекцией цилиндра.

На фронтальной плоскости проекций видимы будут те точки линии пересечения, которые лежат перед плоскостью симметрии μ(μι) — точки 1,2, 3,4, 5 и 6.Образующая конуса будет невидима между точками 1 и 6, т.к. она находится внутри цилиндра. Очерковая образующая цилиндра видима полностью.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.30. Определение видимости линии пересечения поверхностей 

6. Обвести в соответствии с типами линий, оформить работу. Пример выполнения графической работы приведен на рис. 14.31.

Таблица 14.5 Задания для графической работы 5 (координаты и размеры, мм)

№вар.

Xk

Ук

Zk

R

h

Xe

УЕ

Ze

Ri

1

80

70

0

45

100

50

70

32

35

2

80

70

0

45

100

50

70

32

30

3

80

72

0

45

100

53

72

32

32

4

80

72

0

45

100

60

72

35

35

5

70

70

0

44

102

50

70

32

32

6

75

70

0

45

98

65

70

35

35

7

75

70

0

45

98

70

70

35

35

8

75

72

0

45

98

75

72

35

35

9

75

72

0

43

98

80

72

35

35

10

75

75

0

44

102

50

75

35

35

11

80

75

0

43

102

85

75

36

36

12

80

75

0

43

102

85

75

40

35

13

80

75

0

42

102

80

75

40

35

14

80

70

0

42

102

80

70

40

32

15

80

70

0

42

100

75

70

40

32

16

70

72

0

43

100

75

72

42

32

17

70

72

0

44

100

70

72

40

32

18

70

74

0

44

100

70

74

36

32

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Рис. 14.30.  Пример выполнения графической работы

Аксонометрические чертежи

Аксонометрические чертежи применяют, в основном, для усиления наглядности изображаемого на комплексном чертеже объекта.

Для построения аксонометрического чертежа в пространстве выбирается некоторая ортогональная система Oxyz (натуральная система) и объект Ф, жестко с ней связанный. На каждой из осей координат откладывается единичный отрезок: Аксонометрическое черчение - примеры с решением заданий и выполнением задач (рисунок 9.1).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Расстояния каждой точки объекта до координатных плоскостей, измеренные единичным отрезком е, дают три числа (натуральные координаты точки), которые определяют ее положение относительно данной системы координат.

Объект вместе с системой отнесения проецируется параллельно на плоскость П’— аксонометрическую (картинную) плоскость проекций.

Проекции всех геометрических элементов на плоскость П’ получили название аксонометрических.

В зависимости от способа проецирования (центрального, параллельного или прямоугольного) получают различные виды аксонометрических проекций: центральную, параллельную косоугольную или прямоугольную аксонометрии.

Аксонометрические проекции геометрических элементов на координатные плоскости называют вторичными проекциями.

Аксонометрическую координатную ломаную можно построить, если даны аксонометрическая проекция точки и одна из ее вторичных проекций.

В процессе построения аксонометрических чертежей возникает на вопрос: «Каким образом следует задавать на картинной плоскости аксонометрические оси и аксонометрические масштабные единицы? »

Ответ на него дает основная теорема параллельной аксонометрии (теорема Польке), которая утверждает следующее.

В косоугольной аксонометрии аксонометрические оси на плоскости чертежа и единичные отрезки на них могут быть выбраны совершенно произвольно.

Это означает, что, задав на картинной плоскости три проходящие через одну точку несовпадающие прямые Аксонометрическое черчение - примеры с решением заданий и выполнением задач’ и отложив на них три отрезка произвольной длины (отличной от нуля), можно утверждать, что данная фигура может рассматриваться как параллельная проекция трех взаимноперпендикулярных осей координат Oxyz с отложенными на них соответственно равными единичными отрезками Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Из теоремы следует, что аксонометрическая система в общем случае определяется пятью независимыми параметрами: тремя аксонометрическими единичными отрезками и двумя углами между аксонометрическими осями.

В зависимости от соотношений между аксонометрическими единичными отрезками параллельные аксонометрические проекции классифицируют как триметрические Аксонометрическое черчение - примеры с решением заданий и выполнением задач диметрические Аксонометрическое черчение - примеры с решением заданий и выполнением задач и изометрические проекцииАксонометрическое черчение - примеры с решением заданий и выполнением задач

Для большего удобства построений в аксонометрии вводится понятие показателей искажения. Показатель искажения для отрезка данного направления определяют как отношение величины аксонометрической проекции отрезка к его натуральной величине.

Для построения аксонометрической проекции фигуры достаточно знать три показателя искажения вдоль координатных осей. Показатели искажения по осям обозначают буквами Аксонометрическое черчение - примеры с решением заданий и выполнением задач Их определяют также, Аксонометрическое черчение - примеры с решением заданий и выполнением задачАксонометрическое черчение - примеры с решением заданий и выполнением задач

Прямоугольная аксонометрия

Аксонометрическая проекция, полученная при прямоугольном проецировании, называется прямоугольной или ортогональной аксонометрией. В прямоугольной аксонометрии теорема Польке не имеет места.

Для прямоугольной аксонометрии характерно следующее (рисунок 9.2):

  • а)    в прямоугольной аксонометрии высоты треугольника следов лежат на аксонометрических осях ;
  • б)    треугольник следов всегда остроугольный;
  • в)    три выходящие из одной точки (на плоскости) вектора могут быть приняты за оси прямоугольной аксонометрии  только в том случае, если они образуют между собой тупые углы;
  • г)    сумма квадратов показателей искажения равна двум:Аксонометрическое черчение - примеры с решением заданий и выполнением задач

В прямоугольной аксонометрии аксонометрические оси являются биссектрисами углов треугольника, cmopоны которого пропорциональны квадратам показателей искажения.

Прямоугольная аксонометрия определяется двумя параметрами: двумя показателями искажения или двумя углами между аксонометрическими осями.

Рисунок 9.2 — Свойства прямоугольной аксонометрии
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Практические аксонометрии

При практическом построении аксонометрических чертежей возникает необходимость в определении длины аксонометрических координатных отрезков по их натуральным координатам.

С целью сокращения вычислительной работы путем подбора некоторого множителя т можно один из показателей привести к единице и пересчитать остальные два. В отличие от точных показателей искажения новые показатели называют приведенными, а подобранный множитель — коэффициентом приведения.

Обозначают приведенные __    у. показатели искажения прописными буквами U, V и W} причем

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрическое черчение - примеры с решением заданий и выполнением задачРисунок 9.3 — Прямоугольная изометрия

Изображение при этом изменяется подобно в масштабе m: 1. Такая аксонеметрическая проекция называется практической или приведенной.

Для практических аксонометрических систем углы между осями и показатели искажения зафиксированы в общесоюзных государственных стандартах (приложение к ГОСТ 2.317- 69) и эти виды проекций называют стандартными.

Прямоугольная изометрическая проекция. Из равенства углов наклона координатных осей к картинной плоскости следует, что Аксонометрическое черчение - примеры с решением заданий и выполнением задачаксонометрические оси образуют между собой углы, равные 120°. Из Аксонометрическое черчение - примеры с решением заданий и выполнением задачследует, что u=v=w=0,82.

Для упрощения построений пользуются практической (приведенной) изометрией. Приведенные показатели искажения u=V=W = 1. В этом случае на аксонометрических осях откладывают натуральные координатные отрезки. Коэффициент приведения m = 1/0,82 = 1,22. Следовательно, в приведенной прямоугольной изометрии изображение увеличено в 1,22 раза.

В отличие от косоугольных изометрий, прямоугольная изометрия только одна.

В силу свойства прямоугольной изометрии все эллипсы, служащие проекциями окружностей, расположенных в плоскостях, параллельных координатным плоскостям, имеют одинаковую форму. В точной изометрии (для всех эллипсов) большая ось равна диаметру, малая Аксонометрическое черчение - примеры с решением заданий и выполнением задач 0,58 диаметра. Для приведенной изометрии соответственно 1,22 и 0,71 диаметра. Малая ось параллельна проекции нормали к соответствующей плоскости. На рисунке 9.3 изображены проекции трех окружностей.

В прямоугольной диметрии две координатные оси (обычно Oz и Оу) наклонены под одинаковыми углами к картинной плоскости, а третья ось направлена так, что показатель искажения вдоль нее вдвое меньше. Например, v=w и u=v/2.

Косоугольных диметрических систем с заданным соотношением показателей искажения существует бесчисленное множество; прямоугольная диметрия — только одна.

Наибольшее распространение получила приведенная диметрия (рисунок 9.4), у нее коэффициенты искажения соответственно равны Аксонометрическое черчение - примеры с решением заданий и выполнением задач0,94 и Аксонометрическое черчение - примеры с решением заданий и выполнением задач=0,4 7.

Для получения практической (стандартной) диметрии показатели искажения v и W приравниваются к единице, полагая (m = 1/0,94=1,06) V=W=1 и U=0,5. Масштаб практической диметрии Ml,06:1.
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Величина малой оси эллипсов, расположенных в плоскостях Оху и Oxz, равна 1/3 от диаметра окружности, величина большой оси — диаметр. В стандартной диметрии соответственно 0,35 и 1,06 диаметра (рисунок 9.4).

Для эллипса, расположенного в плоскости Oyz, малая ось равна 0,94 диаметра.

Иногда, при решении практических задач, возникает необходимость построения аксонометрического чертежа, в котором одна из координатных плоскостей была бы параллельна картинной плоскости. Это возможно только в случае использования косоугольного проецирования.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Наиболее распространена косоугольная фронтальная диметрия, в которой плоскость xOz параллельна картинной плоскости. На такой проекции аксонометрические осиАксонометрическое черчение - примеры с решением заданий и выполнением задачвзаимно перпендикулярны и показатели искажения по ним равны единице и u=w=1. Направление оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач и показатель искажения v могут быть выбраны произвольно

ГОСТ рекомендует направление оси Аксонометрическое черчение - примеры с решением заданий и выполнением задач выбирать по биссектрисе угла xOz, принимая v = 0,5. Этот вид проекции называют еще кабинетной проекцией (рисунок 9.5).

В различных отраслях практической деятельности применяются и другие виды косоугольных проекций, например, кавальерная (косоугольная изометрическая фронтальная проекция), военная перспектива (горизонтальная изометрическая проекция рисунок 9.6) и др.
Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Объясняю:

Прямоугольные проекции предмета на взаимно перпендикулярные плоскости проекций по методу Г. Монжа позволяют точно передать на чертеже форму предмета и его размеры, просты в построении, но не обладают наглядностью. Создание в уме по комплексному чертежу пространственного образа изображенного предмета требует навыков аналитического мышления и наличия пространственного воображения, т. е. достаточно развитого пространственного мышления.

Для наглядного изображения предмета существуют проекции, которые называют аксонометрическими проекциями, или аксонометриями (в переводе с древнегреческого – осеизмерение).

Аксонометрическая проекция – это параллельная проекция предмета вместе с системой прямоугольных координат, к которым этот предмет отнесен в пространстве, на некоторую плоскость аксонометрических проекций (рис. 10.1).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Чтобы обеспечить наглядность предмета по одному изображению на одной аксонометрической плоскости, направление проецирования (направление проецирующих лучей) не должно быть параллельным координатным плоскостям проекций xOy, xOz и zOy, относительно которых выполняются проекции предмета на чертеже.

Систему прямоугольных координат Oxyz, к которой предмет относят в пространстве для построения его аксонометрии, выбирают обычно так, чтобы оси x, y и z этой системы совпадали с натуральной системой координатных осей чертежа.

Аксонометрические проекции как проекции параллельные имеют некоторые свойства параллельных проекций:

  • – аксонометрическая проекция отрезка прямой также является прямой;
  • – если отрезки прямых параллельны на предмете, они также параллельны на его аксонометрической проекции;
  • – аксонометрической проекцией окружности на аксонометрии в общем случае является эллипс.

На рис. 10.1 показана схема проецирования точки А, построенной на чертеже в системе натуральных прямоугольных координат Оxyz и отнесенную к этим же координатам, на некоторую плоскость аксонометрических проекций α по направлению проецирования S.

Положение точки А определяется в этой системе пространственной координатной ломаной O-Ax-A’-A, отрезки которой соответствуют координатам x, y и z точки А. На взятой произвольно плоскости аксонометрических проекций α получены три прямые xα, yα и zα, выходящие из одной точки Oα, которые называются аксонометрическими осями и являются проекциями пространственных координатных осей x, y и z, к которым отнесена точка А. Полученные углы между аксонометрическими осями зависят от положения аксонометрической плоскости и угла проецирования к этой плоскости. На аксонометрии положение точки Аα определяет плоская координатная ломаная Оα-Аxα-Ao‘-Aα, отрезки которой соответствуют аксонометрическим координатам xα, yα и zα аксонометрической проекции точки А(Аα).

Поскольку направление проецирования S не параллельно ни одной из осей системы прямоугольных пространственных координат, то истинные размеры отрезков пространственной координатной ломаной О-Аx-A’-A на аксонометрической проекции искажаются и, следовательно, искажаются размеры любого предмета на его аксонометрическом изображении.

Для определения степени искажения размеров предмета на аксонометрических проекциях введено понятие коэффициентов искажения по аксонометрическим осям.

Если на осях x, y и z системы натуральных прямоугольных координат отложить от точки О равные масштабные отрезки ex = ey = ez, то в системе аксонометрических координатных осей получаются искаженные проекции этих отрезков е, е и e.

Отношения аксонометрических проекций масштабных отрезков к натуральным величинам масштабных отрезков и называются коэффициентами искажения по аксонометрическим осям:

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Расчетные коэффициенты искажения имеют дробные значения, неудобные для выполнения аксонометрических построений (0,82; 0,47 и т. д.).

Для построения на чертежах аксонометрических проекций пользуются так называемыми приведенными коэффициентами искажения, округленными до 1 или 0,5.

Математические (тригонометрические) расчеты величин коэффициентов искажения, углов между аксонометрическими осями, расположение и размеры больших и малых осей эллипсов здесь не рассматриваются (подробнее об этом см. в [12]).

В зависимости от соотношения коэффициентов искажения аксонометрические проекции разделяются на:

  • а) изометрические, у которых все коэффициенты искажения равны, т. е. Kx = Ky = Kz (izos – равный);
  • б) диметрические, у которых два коэффициента равны, т. е. Kx = Kz, а Ky им не равен (di – двойной);
  • в) триметрические, у которых все коэффициенты разные, т. е. Аксонометрическое черчение - примеры с решением заданий и выполнением задач (treis – три).

В зависимости от угла наклона проецирующих лучей к плоскости аксонометрических проекций (угла проецирования), аксонометрические проекции разделяются на:

  • а) прямоугольные – проецирующие лучи перпендикулярны аксонометрической плоскости проекций (угол проецирования равен 90°);
  • б) косоугольные – проецирующие лучи не перпендикулярны аксонометрической плоскости проекций (угол проецирования не равен 90°).

Аксонометрических проекций можно получить бесконечное множество, как может быть бесконечно количество аксонометрических плоскостей проекций и направлений проецирования к ним.

Основная теорема аксонометрических проекций была сформулирована немецким геометром К. Польке: «Любые три отрезка на плоскости, выходящие из одной точки, могут быть приняты за параллельные проекции (то есть аксонометрические проекции) трех равных и взаимно перпендикулярных отрезков (аксонометрических осей) в пространстве».

Г. Шварц, немецкий математик, обобщил теорему К. Польке, доказав, что «любой полный четырехугольник на плоскости всегда является параллельной проекцией некоторого масштабного тетраэдра (пирамиды), имеющего равные и взаимно перпендикулярные ребра» (диагонали четырехугольника можно рассматривать как аксонометрические оси, рис. 10.2). Эту обобщенную теорему и называют теоремой Польке-Шварца.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Стандартные аксонометрии

ГОСТ 2.317–2011 – «Аксонометрические проекции». Математические (тригонометрические) расчеты величин коэффициентов искажения, углов между аксонометрическими осями, расположение и размеры больших и малых осей эллипсов здесь, как указывалось, не рассматриваются (подробнее об этом см. в [12]).

В стандарте даны пять видов аксонометрических проекций:

  1. Прямоугольная изометрия.
  2. Прямоугольная диметрия.
  3. Косоугольная фронтальная диметрия.
  4. Косоугольная фронтальная изометрия.
  5. Косоугольная горизонтальная изометрия.

В курсе начертательной геометрии рассматриваются первых три вида аксонометрических проекций.

Окружности на проекциях предметов проецируются на аксонометрическое изображение предмета в виде эллипсов. Различные графические способы построения четырехцентровых овалов, которыми заменяют эллипсы, окружности которых лежат в плоскостях, параллельных плоскостям проекций V, H и W, рассматриваются в учебниках по черчению и инженерной графике. Эллипсы, окружности которых лежат в плоскостях, непараллельных плоскостям проекций, строятся на аксонометриях в основном по точкам, принадлежащих этим окружностям.

Прямоугольная изометрия

В прямоугольной изометрии аксонометрические оси расположены под равными углами друг к другу (120°).

Для прямоугольных аксонометрий получена расчетная формула по коэффициентам искажения:

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

т. е. сумма квадратов коэффициентов искажения равна двум [12].

В прямоугольной изометрии коэффициенты искажения равны и по приведенной формуле получается, что Kx = Ky = Kz = 0,82. Для построения прямоугольной изометрии пользуются приведенными коэффициентами искажения, округленными до единицы, то есть 

Кx = Ky = Kz = 1.

Аксонометрическая плоскость прямоугольной изометрии равнонаклонена ко всем трем плоскостям проекций H, V и W и пересекает эти плоскости проекций по равностороннему треугольнику, который называют треугольником следов. Следовательно, аксонометрические оси прямоугольной изометрии являются высотами, биссектрисами и медианами этого треугольника, а точка Оα их пересечения является точкой начала аксонометрических координат. Как известно из геометрии, углы между высотами равностороннего треугольника равны 120 градусам и соответственно углы между аксонометрическими осями также равны 120°.

На рис. 10.3 показано расположение аксонометрических осей в прямоугольной изометрии (ось «z» всегда располагается вертикально), размеры и расположение больших и малых осей эллипсов и их построение одним из известных способов.

Большие оси АВ всех трех эллипсов равны 1,22d, где d – диаметр окружности, а малые оси EF эллипсов равны 0,71d.

Ориентация больших и малых осей эллипсов относительно аксонометрических осей:

  • – эллипс 1 : аксонометрическая проекция окружности, лежащей на проекциях предмета в плоскости, параллельной плоскости проекций V: большая ось эллипса перпендикулярна аксонометрической оси y, а малая ось совпадает с осью y;
  • – эллипс 2 : аксонометрическая проекция окружности, лежащей на проекциях предмета в плоскости, параллельной плоскости проекций H: большая ось эллипса перпендикулярна аксонометрической оси z, а малая ось совпадает с осью z;
  • – эллипс 3 : аксонометрическая проекция окружности, лежащей на проекциях предмета в плоскости, параллельной плоскости проекций W: большая ось эллипса перпендикулярна аксонометрической оси x, а малая ось совпадает с осью x.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

На рис. 10.3 показан один из способов построения четырех центровых овалов, которыми на чертежах заменяют эллипсы в прямоугольной изометрии.

Графические действия для построения овалов следующие:

  • – провести две концентрические окружности, диаметры которых равны размерам большой и малой оси эллипса с центром в точке O2;
  • – из двух центров в точках 1, лежащих на окружности большой оси, провести две большие дуги радиусами R = 1Е и R = 1F;
  • – из точек 1 провести прямые n через точки 2, лежащие на окружности малой оси;
  • – на пересечении проведенных дуг и прямых n получить точки 3, которые определяют окончание больших дуг;
  • – из двух центров в точках 2 провести две малые дуги радиусами r = 2A и r = 2B до точек 3.

Прямоугольная диметрия

В прямоугольной диметрии коэффициенты искажения по аксонометрическим осям x и z равны между собой, а коэффициент искажения по оси y принят равным их половине. Отсюда по приведенной формуле (1) получены следующие величины коэффициентов искажения по аксонометрическим осям: Kx = Kz = 0,94, а Ky = 0,47. Для построения прямоугольной диметрии пользуются приведенными коэффициентами искажения, округленными и равными: Kx = Kz = 1, а Ky = 0,5.

Аксонометрические оси по математическим расчетам располагаются относительно горизонтальной линии следующим образом: ось z расположена вертикально, ось x – под углом 7°10′, ось y – под углом 41°25′.

На рис. 10.4 показано расположение аксонометрических осей и способ графического построения углов между осями, размеры и расположение больших и малых осей эллипсов и способы построения четырех центровых овалов, заменяющих эллипсы на чертеже.

1. Графический способ построения аксонометрических осей на чертеже:

  • – провести горизонтальную линию и вертикальную ось Z и отметить на их пересечении точку O начала координат;
  • – отложить на горизонтальной линии от точки O влево (или вправо) 8 размерных единиц (8 раз по 10 мм) и провести вертикальную линию;
  • – от конечной точки отложить вниз 1 размерную единицу, а вверх 7 размерных единиц;
  • – через конечные точки вертикальных отрезков и точку O провести аксонометрические оси X и Y.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

2. Большие оси АВ всех трех эллипсов равны 1,06d, а величины малых осей EF эллипсов следующие:

  • – малая ось эллипса 1 равна 0,95d;
  • – малые оси эллипсов 2 и 3 равны 0,35d.

Ориентация больших и малых осей эллипсов относительно аксонометрических осей:

  • – эллипс 1 : аксонометрическая проекция окружности, лежащей на проекциях предмета в плоскости, параллельной плоскости проекций V: большая ось эллипса перпендикулярна оси y, а малая ось эллипса совпадает с осью y;
  • – эллипс 2 : проекция окружности, лежащей в плоскости, параллельной плоскости проекций H: большая ось эллипса перпендикулярна оси z, а малая ось совпадает с осью z;
  • – эллипс 3 : проекция окружности, лежащей в плоскости, параллельной плоскости проекций W: большая ось эллипса перпендикулярна оси x, а малая ось совпадает с осью x.

Графические действия для построения овала 1 с центром в точке О1:

  • – отложить на прямой, перпендикулярной оси y, отрезок AB, равный размеру большой оси эллипса Do = 1,06d;
  • – отложить на оси y отрезок EF, равный размеру малой оси эллипса do = 0,95d;
  • – из точки О1 провести окружность d1=0,2d, которая пересечет малую ось эллипса в точках 1 и 1o, а большую ось в точках 2 и 2o;
  • – из полученных точек 1 и 1o провести дуги радиусами R от точки 1 до точки F и от точки 1o до точки E; из точек 2 и 2o провести дуги радиусами r от точки 2o до точки A и от точки 2 до точки B;
  • – дуги проводить до точек сопряжения 3 (построение показано).

Графические действия для построения овала 2 с центром в точке О2:

  • – отложить на горизонтальной прямой, перпендикулярной оси Z, отрезок AB, равный размеру большой оси эллипса 1,06d;
  • – отложить на продолжении оси Z отрезок EF, равный размеру малой оси 0,35d;
  • – отложить на оси y отрезок EF, равный размеру малой оси эллипса do=0,95d;
  • – построить точки 1, отложив от точки О2 вверх и вниз по оси Z отрезки О2-1, равные большой оси эллипса Do = 1,06d;
  • – построить точки 2 на большой оси, отложив от точек А и В отрезки А-2 и В-2, равные 1/4 малой оси эллипса do;
  • – из полученных точек 1 провести две большие дуги радиусом R = Do + 1/2do, а из точек 2 провести две малые дуги радиусом r = 1/4do;
  • – дуги проводить до точек сопряжения «3» (построение показано).

Построение овала 3 выполняется аналогично (большая ось АВАксонометрическое черчение - примеры с решением заданий и выполнением задач x).

Косоугольная (фронтальная) диметрия

В качестве аксонометрической плоскости проекций здесь взята плоскость, параллельная плоскости проекций V. Поэтому на аксонометрии сохраняется угол 90° между аксонометрическими осями x и z, а ось y располагают под углом 45° к горизонтальной прямой.

Приведенные коэффициенты искажения по аксонометрическим осям: по осям x и z: Kx = Kz = 1, а по оси y: Ky = 0,5.

На рис. 10.5 показано расположение аксонометрических осей в косоугольной диметрии, размеры и расположение больших и малых осей эллипсов и графический способ построения овалов.

Окружности на проекциях предмета, лежащие в плоскостях, параллельных плоскости проекций V, проецируются на аксонометрическое изображение в виде окружностей, т. е. не искажаются, так как параллельны плоскости аксонометрических проекций.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Окружности, лежащие в плоскостях, параллельных плоскостям проекций H и W, проецируются на аксонометрическое изображение в виде эллипсов, большие оси AB которых равны 1,07d, а малые оси EF равны 0,33d.

Расположение больших и малых осей эллипсов относительно аксонометрических осей:

  • – эллипс 2: большая ось AB расположена под углом 7º14′ к горизонтальной линии и наклонена в сторону аксонометрической оси y; малая ось EF перпендикулярна большой оси эллипса;
  • – эллипс 3: большая ось AB расположена под углом 7º14′ к вертикальной линии и наклонена в сторону аксонометрической оси y; малая ось EF перпендикулярна большой оси эллипса.

Графическое построение двух одинаковых овалов 2 и 3, заменяющих эллипсы на чертежах, аналогичны построениям овалов для прямоугольной диметрии.

Примеры построения аксонометрических проекций

На рис. 10.6 показан пример построения аксонометрической проекции правильной треугольной пирамиды со срезом фронтально-проецирующей плоскостью β(βV) в прямоугольной диметрии.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построение аксонометрии пирамиды выполняется по предлагаемому графическому алгоритму.

1-е действие. Отнести пирамиду к системе прямоугольных координат x, y и z, оси которой параллельны осям натуральной системы координат, но проходят через высоту пирамиды (ось z) и ее основание (оси x и y).

2-е действие. Определить в принятой системе координат на проекциях пирамиды координаты x, y и z отмеченных точек 1, 2, 3, лежащих на ребрах пирамиды, и точек ABC – вершин основания пирамиды.

3-е действие. На свободном поле чертежа провести аксонометрические оси прямоугольной диметрии из произвольной точки О: ось z – вертикально, ось x – под углом 7°10′, а ось y – под углом 41°25′ к горизонтальной линии (использовать графический способ построения аксонометрических осей).

4-е действие. Построить тонкими линиями аксонометрическую проекцию пирамиды без среза.

4.1. Построить аксонометрическое изображение основания пирамиды AоBоCо по координатным ломаным этих точек (основание лежит в системе осей xOy и называется вторичной проекцией):

  • – точка Aо: координатная ломаная xA – yA;
  • – точка Bо: координатная ломаная xB – yB;
  • – точка Cо: yC.

!!! Координатные отрезки параллельны соответствующим аксонометрическим осям.

4.2. Построить по координате zS на аксонометрической оси z проекцию вершины пирамиды и соединить вершину S с точками основания AоBоCо ребрами, то есть построить аксонометрию пирамиды.

5-е действие. Достроить срез на аксонометрии пирамиды, построив на ребрах пирамиды по координатам x, y и z аксонометрические проекции отмеченных точек 1, 2 и 3 по соответствующим плоским координатным ломанным:

  • – точка 1 на ребре SAо: координатная ломаная – x1-y1-z1;
  • – точка 2 на ребре SCо: y2-z2;
  • – точка 3 на ребре SBо: x3-z3-y3.

6-е действие. Оформить аксонометрию пирамиды, выполнив толстыми линиями ее видимый контур (оставить тонкими линиями полную проекцию пирамиды, невидимые линии и линии построения).

На рис. 10.7 показан пример построения аксонометрической проекции конуса со срезами двумя фронтально-проецирующими плоскостями (в сечении плоскостью α – треугольник со сторонами-образующими, в сечении плоскостью β – эллипс) в прямоугольной изометрии.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Графические действия для построения аксонометрии конуса соответствуют предложенному алгоритму для построения аксонометрии пирамиды:

1-е действие. Отнести конус к такой же системе прямоугольных координат x, y и z (ось z совпадет с высотой конуса, оси x и y проходят по основанию конуса).

2-е действие. Определить координаты x, y и z для точек 1, 2, 3 и 4 на поверхности конуса для построения сечений на его аксонометрии.

3-е действие. На свободном поле чертежа отметить точку О начала аксонометрических координат и провести оси прямоугольной изометрии под углами 120° с вертикальной осью z.

4-е действие. Построить аксонометрическую проекцию конуса без срезов:

4.1. Построить эллипс основания конуса с центром в точке О, большая ось которого перпендикулярна аксонометрической оси Z, так как окружность основания конуса лежит в горизонтальной плоскости (см. графическое построение овала 2 на рис. 10.3).

4.2. Построить вершину конуса точку S на оси z по ее координате zs и провести две касательные к эллипсу через вершину S.

5-е действие. Достроить срезы на аксонометрии конуса, построив аксонометрические проекции отмеченных точек 1, 2, 3 и 4 по соответствующим плоским координатным ломаным:

  • – точка 1: координатная ломаная x1-z1;
  • – точки 2: координатная ломаная x2-y2-z2;
  • – точки 3: координатная ломаная y3-z3;
  • – точки 4: координатная ломаная x4-y4-z4 (лежат на образующих S-5о).

Соединить построенные точки соответствующими линиям (участок эллипса и треугольник).

6-е действие. Оформить чертеж аксонометрии конуса, выполнив толстыми линиями ее видимый контур (оставить тонкими линиями полный контур пирамиды, невидимые линии и линии построения).

На рис. 10.8 показано построение аксонометрической проекции цилиндра с полуцилиндрическим вырезом (их радиусы равны) в прямоугольной изометрии.

В этом частном случае пересечения поверхностей для построения линии пересечения на профильной проекции следует применить теорему Г. Монжа, так как эти две цилиндрические поверхности 2-го порядка равных диаметров описаны вокруг сферы.

Построение аксонометрии выполняется по аналогичному графическому алгоритму:

1-е действие. Отнести цилиндр к системе координатных осей x, y и z: оси x и y провести по нижнему основанию, а ось z – по оси вращения цилиндра.

2-е действие. Обозначить характерные и промежуточные точки 1, 2, 3 и 4 на поверхности цилиндра и определить координаты x, y, z обозначенных точек для построения линии пересечения полуцилиндрического выреза с поверхностью заданного цилиндра (симметричные точки обозначены на одной половине окружности).

3-е действие. На свободном поле чертежа отметить точку О начала аксонометрических координат и провести аксонометрические оси прямоугольной изометрии: ось z – вертикально, а оси x и y – под углами 120° к оси z.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

4-е действие. Построить аксонометрию цилиндра без выреза.

4.1. Построить эллипс нижнего основания цилиндра в точке О, большая ось которого перпендикулярна оси z, так как окружность основания лежит в горизонтальной плоскости.

4.2. Построить точку О1 верхнего основания по координате zО1 и эллипса верхнего основания; соединить эллипсы двумя очерковыми образующими по конечным точкам больших осей эллипсов.

5-е действие. Достроить вырез на аксонометрии цилиндра, построив проекции обозначенных точек 1, 2, 3 и 4 по координатным ломаным (снизу вверх) x – z:

  • точки 1 и 4 → x1(x4) – z1(z4);
  • точки 2 → x2 – z2 (четыре точки);
  • точки 3 → z3 (две точки);
  • точки К (на очерковых образующих; см. построения на горизонтальных проекциях) → xК – zК;
  • построенные точки соединить:
  • – одна плоская кривая проецируется на аксонометрию в виде эллипса;
  • – вторая плоская кривая проецируется в прямую линию (запомните!).

6-е действие. Соедините построенные точки соответствующими линиями – отрезками образующих и участками эллипсов.

7-е действие. Оформить аксонометрию цилиндра, выполнив толстыми линиями ее видимый контур (оставить тонкими линиями полный контур цилиндра, невидимые линии и линии построения).

На рис. 10.9 показан пример построения шара со срезами в прямоугольной изометрии.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Напомним, что сечением поверхности шара любой плоскостью является окружность. Но на чертеже окружности проецируются в эллипсы. В примере срезы выполнены профильной плоскостью α(αV), горизонтальной плоскостью β(βV) и фронтально-проецирующей плоскостью γ(γV). Следовательно, на аксонометрическом изображении шара:

  • эллипс окружности Øα, лежащий в профильной плоскости;
  • эллипс окружности Øβ, лежащий в горизонтальной плоскости;
  • эллипс как проекцию окружности, лежащий в плоскости γ, по обозначенным точкам.

Аксонометрическим изображением шара в прямоугольной изометрии является окружность с диаметром, равным 1,22d, где d – диаметр шара.

Графический алгоритм для построения аксонометрии шара следующий:

1-е действие. Отнести шар к системе координат x, y, z, проходящих через его центр (точка О).

2-е действие. Обозначить характерные точки 1, 2, 3, 4, 5 и 6 на поверхности шара и определить координаты обозначенных точек для построения срезов на аксонометрии.

3-е действие. На свободном поле чертежа отметить точку О начала аксонометрических координат и провести аксонометрические оси прямоугольной изометрии.

4-е действие. Построить аксонометрию шара без срезов – провести окружность диаметром 1,22d.

5-е действие. Достроить срезы на аксонометрии шара:

  • построить эллипс диаметром Øα, большая ось которого перпендикулярна аксонометрической оси x, с центром в точке О1 с координатой x01;
  • построить эллипс диаметром Øβ, большая ось которого перпендикулярна аксонометрической оси z, с центром в точке О2 с координатой x02 (построенные эллипсы пересекаются по линии 2-2);
  • построить по координате x4 линию 4-4 на построенном горизонтальном эллипсе;
  • построить по координатам точки 5 и 6: точку 5 – по ломаной x5-y5, а точку 6 – по координате z6.

6-е действие. Соединить построенные точки 4-5-6 эллиптической кривой.

7-е действие. Оформить аксонометрию шара, выполнив толстыми линиями его видимый контур, оставив тонкими линиями полный очерк шара, невидимые линии и линии построения.

На рис. 10.10 показан пример построения половины открытого тора в прямоугольной изометрии.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построение аксонометрии выполняется по следующему графическому алгоритму:

1-е действие. Отнести тор к системе координат x, y, z.

2-е действие. Если тор со срезами, обозначить характерный точки и определить их координаты: например, координаты точек А и В.

3-е действие. На свободном поле чертежа отметить точку О начала аксонометрических координат и провести аксонометрические оси прямоугольной изометрии.

4-е действие. Построить эллипс направляющей окружности радиусом R с центром в точке О, большая ось которого перпендикулярна оси y.

5-е действие. В полученных на оси x точках О1 и О2 построить два эллипса образующих окружностей радиусом r, большие оси которых перпендикулярны оси z.

6-е действие. Построить аксонометрию тора:

  • провести достаточное количество образующих окружностей диаметрами, равными 1,22 r с центрами на эллипсе направляющей окружности тора;
  • провести две лекальные огибающие касательные кривые.

7-е действие. Достроить аксонометрические проекции заданных точек А и В по их координатным ломаным:

  • точка А → xА-yА-zА;
  • точка В → xВ-yВ-zВ.

8-е действие. Оформить аксонометрию открытого тора.

На рис. 10.11 показан пример построения тороида (самопересекающегося тора) в прямоугольной изометрии.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построение аксонометрии выполняется по следующему графическому алгоритму:

1-е действие. Отнести тор к системе координат x, y, z, проходящей по его основанию и ось вращения.

2-е действие. Рассечь тороид достаточным количеством плоскостей, перпендикулярных оси его вращения и определить радиус окружности каждого сечения (измерить линейкой) с центрами в точках О1, О2, О3 и т. д.

3-е действие. Обозначить характерные точки 1, 2, 3 и 4 среза и определить их координаты.

4-е действие. На свободном поле чертежа отметить точку О начала аксонометрических координат и провести аксонометрические оси прямоугольной изометрии.

5-е действие. Построить аксонометрию тороида:

  • построить семейство эллипсов в точках О, О1, … , О4 соответствующих радиусов R, R1, R2, … , R4 с координатами z(z1, z2, … , z4), большие оси которых перпендикулярны оси z, так как лежат в горизонтальных плоскостях;
  • построить точку S;
  • провести две касательные огибающие кривые к эллипсам.

6-е действие. Достроить срез на аксонометрии тороида по координатам отмеченных точек (построения см. рис. 10.11).

7-е действие. Оформить аксонометрию тороида.

!!! Аксонометрическая проекция глобоида в прямоугольной изометрии строится аналогично тем же способом «сечений».

На рис. 10.12 показан пример построения аксонометрической проекции правильной четырехгранной призмы со сквозным пазом, выполненным двумя профильными α1V1) и α2V2) фронтально-проецирующей плоскостями β(βV) в косоугольной диметрии (коэффициенты искажения kx = kz =1, ky = 0,5).

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построение аксонометрии призмы выполняется по следующему графическому алгоритму:

1-е действие. Отнести («привязать») призму к системе прямоугольных координат x, y, z, оси которой параллельны осям натуральной системы координат, относительно которой построены проекции призмы, но проходят через высоту призмы (ось z) и через центр нижнего основания призмы (оси x и y).

2-е действие. Обозначить характерные точки 1, 2, …, 5 на поверхности призмы.

3-е действие. Определить в отнесенной к призме системе координат на ее проекциях координаты x, y и z обозначенных точек:

  • точки 1 и 5, лежащих на верхнем основании и ребрах призмы;
  • точек 2 и 4, лежащих на линиях пересечения плоскостей паза, а также обозначенных буквами А, В, С и D вершин нижнего основания призмы.

4-е действие. На свободном поле чертежа отметить точку О начала аксонометрических координат и провести аксонометрические оси косоугольной диметрии: ось z – вертикально; ось x – горизонтально; ось y – под углом 45° к горизонтальной линии (оси x).

5-е действие. Построить тонкими линиями аксонометрическую проекцию призмы без выреза:

5.1. Построить нижнее основание призмы АоВоСоDо по координатам x и y этих точек (основание лежит в горизонтальной плоскости с осями xОy и называется вторичной проекцией):

  • точки Ао и Со – симметрично по равным координатам xА и yА на оси x;
  • точки Во и Dо – по координатам yВ и yD на оси y (координаты уменьшить в 2 раза!);
  • соединить построенные вершины отрезками прямых линий.

5.2. Построить верхнее основание призмы:

  • отложить от точки О вверх координату zО1, равную высоте призмы, и через полученную проекцию точки О1 провести аксонометрические оси;
  • из точек Ао, Во, Со и Dо нижнего основания провести вертикально ребра призмы параллельно оси z до пересечения с аксонометрическими верхнего основания и достроить верхнее основание призмы.

6-е действие. Достроить на аксонометрии призмы вырез по координатам обозначенных точек (сверху вниз):

  • очки 1 и 5 на верхнем основании по координатам x1 и x2;
  • точки 2 и 4 – на вертикальных линиях, параллельных оси z, по координатам z2 и z4;
  • точки 3 – на ребрах Во и Dо по координате z3;

7-е действие. Соединить построенные точки отрезками прямых линий.

8-е действие. Оформить аксонометрию призмы, выполнив толстыми линиями ее видимый контур; оставить тонкими линиями полную проекцию призмы, невидимые линии и линии построения.

Структуризация материала десятой лекции в рассмотренном объеме схематически представлена на рис. 10.13 (лист 1). На последующих листах 2 и 3 компактно приведены иллюстрации к этой схеме для визуального закрепления основной части изученного материала при повторении (рис. 10.14 и 10.15).

Аксонометрические проекции

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Аксонометрия — это проекция предмета вместе с осями координат, к которым этот предмет следует отнести в пространстве первого октанта, на некоторую плоскость (плоскость аксонометрических проекций). Направление проецирования на эту плоскость не должно совпадать с направлением натуральных координатных осей первого октанта.

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Прямоугольные аксонометрии

Прямоугольная изометрия

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Прямоугольная диметрия

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

  Косоугольная фронтальная диметрия

Аксонометрическое черчение - примеры с решением заданий и выполнением задач

Построение эллипсов на аксонометрических проекциях смотрите также в учебных пособиях [2, 6] или в учебных изданиях по инженерной графике других авторов.

Кстати вы всегда можете заказать чертежи.

Лекции по предметам:

  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Строительное черчение
  8. Техническое черчение
  9. Геометрическое черчение

Аксонометрические проекции

По вопросам репетиторства по инженерной графике (черчению), вы можете связаться любым удобным для вас способом в разделе Контакты. Возможно очное и дистанционное обучение по Skype: 1250 р./ак.ч.

Во многих случаях при выполнении технических чертежей оказывается полезным наряду изображением предметов в системе ортогональных проекций иметь более наглядные изображения. Для построения таких изображений применяются проекции, называемые аксонометрическими.

Способ аксонометрического проецирования состоит в том, что данный предмет вместе с осями прямоугольных координат, к которым эта система относится в пространстве, параллельно проецируется на некоторую плоскость α (Рисунок 4.1).

Способ аксонометрического проецирования
Рисунок 4.1<>p/

Направление проецирования S определяет положение аксонометрических осей на плоскости проекций α, а также коэффициенты искажения по ним. При этом необходимо обеспечить наглядность изображения и возможность производить определения положений и размеров предмета.
В качестве примера на Рисунке 4.2 показано построение аксонометрической проекции точки А по ее ортогональным проекциям.

построение аксонометрической проекции точки по ее ортогональным проекциям
Рисунок 4.2

Здесь буквами kmn обозначены коэффициенты искажения по осям OXOY и OZ соответственно. Если все три коэффициента равны между собой, то аксонометрическая проекция называется изометрическойесли равны между собой только два  коэффициента, то проекция называется диметрической, если же k≠m≠n, то проекция называется триметрической.
Если направление проецирования S перпендикулярно плоскости проекций α, то аксонометрическая проекция носит названия прямоугольной. В противном случае, аксонометрическая проекция называется косоугольной.
ГОСТ 2.317-2011 устанавливает следующие прямоугольные и косоугольные аксонометрические проекции:

  • прямоугольные изометрические и диметрические;
  • косоугольные фронтально изометрические, горизонтально изометрические и фронтально диметрические;

Ниже приводятся параметры только трех наиболее часто применяемых на практике аксонометрических проекций.
Каждая такая проекция определяется положением осей, коэффициентами искажения по ним, размерами и направлениями осей эллипсов, расположенных в плоскостях, параллельных координатным плоскостям. Для упрощения геометрических построений коэффициенты искажения по осям, как правило, округляются.

4.1.  Прямоугольные проекции

4.1.1. Изометрическая проекция

Направление аксонометрических осей приведено на Рисунке 4.3.
Рисунок 4.3 – Аксонометрические оси в прямоугольной изометрической проекции
Рисунок 4.3 – Аксонометрические оси в прямоугольной изометрической проекции

Действительные коэффициенты искажения по осям OXOY и OZ равны 0,82. Но с такими значениями коэффициентов искажения работать не удобно, поэтому, на практике, используются приведенные коэффициенты искажений. Эта проекция обычно выполняется без искажения, поэтому, приведенные коэффициенты искажений принимается k = m = n =1. Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются в эллипсы, большая ось которых равна 1,22, а малая – 0,71 диаметра образующей окружности D.

Большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY, OZ  и OX, соответственно.

Пример выполнения изометрической проекции условной детали с вырезом приводится на Рисунке 4.4.

Рисунок 4.4 – Изображение детали в прямоугольной изометрической проекции
Рисунок 4.4 – Изображение детали в прямоугольной изометрической проекции

4.1.2. Диметрическая проекция

Положение аксонометрических осей проводится на Рисунке 4.5.

Для построения угла, приблизительно равного 7º10´, строится прямоугольный треугольник, катеты которого составляют одну и восемь единиц длины; для построения угла, приблизительно равного 41º25´ — катеты треугольника, соответственно, равны семи и восьми единицам длины.

Коэффициенты искажения по осям ОХ и OZ k=n=0,94 а по оси OY – m=0,47. При округлении этих параметров принимается k=n=1 и m=0,5. В этом случае размеры осей эллипсов будут: большая ось эллипса 1 равна 0,95D и эллипсов 2 и 3 – 0,35D (D – диаметр окружности). На Рисунке 4.5  большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY, OZ и  OX, соответственно.

Пример прямоугольной диметрической проекции условной детали с вырезом приводится на Рисунке 4.6.

Рисунок 4.5 – Аксонометрические оси в прямоугольной диметрической проекции
Рисунок 4.5 – Аксонометрические оси в прямоугольной диметрической проекции
Рисунок 4.6 – Изображение детали в прямоугольной диметрической проекции
Рисунок 4.6 – Изображение детали в прямоугольной диметрической проекции

4.2 Косоугольные проекции

4.2.1 Фронтальная диметрическая проекция

Положение аксонометрических осей приведено на Рисунке 4.7. Допускается применять фронтальные диметрические проекции с углом наклона к оси OY, равным 300 и 600.

Коэффициент искажения по оси OY равен m=0,5 а по осям OX и OZ — k=n=1.

Рисунок 4.7 – Аксонометрические оси в косоугольной фронтальной диметрической проекции

Рисунок 4.7 – Аксонометрические оси в косоугольной фронтальной диметрической проекции

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на плоскость XOZ без искажения. Большие оси эллипсов 2 и 3 равны 1,07D, а малая ось – 0,33D (D — диаметр окружности). Большая ось эллипса 2 составляет с осью ОХ угол  7º 14´, а большая ось эллипса 3 составляет такой же угол с осью OZ.

Пример аксонометрической проекции условной детали с вырезом приводится на Рисунке 4.8.

Как видно из рисунка, данная деталь располагается таким образом, чтобы её окружности проецировались на плоскость XОZ без искажения.

Рисунок 4.8 – Изображение детали в косоугольной фронтальной диметрической проекции

Рисунок 4.8 – Изображение детали в косоугольной фронтальной диметрической проекции

4.3 Построение эллипса

4.3.1 Построения эллипса по двум осям

На данных осях эллипса АВ и СD строятся как на диаметрах две концентрические окружности (Рисунок 4.9, а).

Одна из этих окружностей делится на несколько равных (или неравных) частей.

Через точки деления и центр эллипса проводятся радиусы, которые делят также вторую окружность. Затем через точки деления большой окружности проводятся прямые, параллельные линии АВ.

Точки пересечения соответствующих прямых и будут точками, принадлежащими эллипсу. На Рисунке 4.9, а показана лишь одна искомая точка 1.

Рисунок 4.9 – Построение эллипса по двум осям b по хордам
                      а                                б                                              в
Рисунок 4.9 – Построение эллипса по двум осям (а), по хордам (б)

4.3.2 Построение эллипса по хордам

Диаметр окружности АВ делится на несколько равных частей, на рисунке 4.9,б их 4. Через точки 1-3 проводятся хорды параллельно диаметру CD. В любой аксонометрической проекции (например, в косоугольной диметрической) изображаются эти же диаметры с учетом коэффициента искажения. Так на Рисунке 4.9,б А1В1=АВ и С1 D1 = 0,5CD. Диаметр А 1В1 делится на то же число равных частей, что и диаметр АВ, через полученные точки 1-3 проводятся отрезки, равные соответственным хордам, умноженным на коэффициент искажение (в нашем случае – 0,5).

4.4 Штриховка сечений

Линии штриховки сечений (разрезов) в аксонометрических проекциях наносятся параллельно одной из диагоналей квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (Рисунок 4.10: а – штриховка в прямоугольной изометрии; б – штриховка в косоугольной фронтальной диметрии).

Рисунок 4.10 – Примеры штриховки в аксонометрических проекциях
                                     а                                                                                б
Рисунок 4.10 – Примеры штриховки в аксонометрических проекциях

По вопросам репетиторства по инженерной графике (черчению), вы можете связаться любым удобным для вас способом в разделе Контакты. Возможно очное и дистанционное обучение по Skype: 1250 р./ак.ч.

Содержание:

  1. Виды аксонометрического проецирования
  2. Прямоугольное аксонометрическое проецирование
  3. Прямоугольная изометрия
  4. Прямоугольная диметрия
  5. Косоугольное аксонометрического проецирования
  6. Косоугольная изометрия
  7. Косоугольная диметрия
  8. Решение позиционных задач
  9. Пересечение прямой с плоскостью. пересечение двух плоскостей
  10. Пересечение тела плоскостью
  11. Пересечение двух тел
  12. Преобразование аксонометрических проекций
  13. Аксонометрические проекции
  14. Рассмотрим способ получения аксонометричес­ких проекций
  15. Изометрическая проекция отрезков и плоских фигур
  16. Изометрическая проекция окружности
  17. Изометрическая проекции геометрических тел 
  18. Диметрическая проекция
  19. Диметрическая проекция окружности
  20. Выполнение диметрических проекций деталей
  21. Фронтальная изометрическая проекция
  22. Горизонтальная изометрическая проекция
  23. Косоугольная фронтальная диметрическая проекция

Аксонометрическое проецирование — это способ аксонометрического проецирования состоит в том, что данная фигура вместе с осями прямоугольных координат, к которым она отнесена в пространстве, параллельно проецируется на некоторую плоскость, принятую за плоскость аксонометрических проекций  (эту плоскость называют также картинной плоскостью).

Виды аксонометрического проецирования

Метод ортогонального проецирования на взаимно перпендикулярные плоскости проекций П1, П2, П3 имеет существенный недостаток, состоящий в том, что представление пространственного образа предмета возможно только при условии одновременного изучения по крайней мере двух его проекций. Способ аксонометрического проецирования  устраняет обозначенный недостаток, давая возможность одновременно видеть изображение предмета с двух или трёх сторон.

Аксонометрическое проецирование (от греческого άξονας – ось и µετρο – мера) – способ изображения геометрических предметов при условии параллельного проецирования на плоскость Аксонометрическое проецирование общего положения. Эта плоскость называется картинной.

При аксонометрическом  проецировании предмет проецируется на картинную плоскость Аксонометрическое проецирование вместе с осями x, y, z ортогональной системы координат. Последние проецируются на картинную плоскость Аксонометрическое проецирование в оси аксонометрического проецирования Аксонометрическое проецирование (рис. 6.1 а).

Аксонометрическое проецирование

Аксонометрическое проецированиеСпособ аксонометрического проецирования

Единичные отрезки ОХ, ОY, OZ проецируются на Аксонометрическое проецирование в отрезки Аксонометрическое проецирование длина которых меньше единицы, поэтому аксонометрическая проекция любого объекта является искажённой по трём координатным осям. Степень уменьшения характеризуется коэффициентами искажения Аксонометрическое проецирование числовые значения которых равны длинам проекций Аксонометрическое проецирование единичных отрезков ОХ, ОY, OZ на картинную плоскость. Коэффициенты Аксонометрическое проецирование являются основными параметрами аксонометрического проецирования. Они равны косинусам углов α, β, γ наклона осей х, у, z до плоскости Аксонометрическое проецирование . Кроме того, коэффициенты искажения связаны между собой соотношением

Аксонометрическое проецирование

где φ – угол аксонометрического проецирования.

Углы Аксонометрическое проецирование наклона осей Аксонометрическое проецирование к горизонту (рис. 6.1 б) зависят от угла φ и коэффициентов Аксонометрическое проецирование (см. п. 6.2 – 6.3).

Виды аксонометрического проецирования обусловлены числовым значением угла φ проецирования и соотношениями коэффициентов искажения Аксонометрическое проецирование (рис. 6.2).

Аксонометрическое проецирование

Аксонометрическое проецированиеКлассификация аксонометрических проекций

На рис. 6.1 б показан способ построения аксонометрической проекции точки А с координатами х, у, z. Для её построения из начала отсчёта Аксонометрическое проецирование вдоль оси Аксонометрическое проецирование откладывается отрезок длиной Аксонометрическое проецирование Из полученной точки параллельно оси Аксонометрическое проецирование проводится отрезок длиной Аксонометрическое проецирование Из полученной точки проводится вертикальный отрезок длиной Аксонометрическое проецирование Полученная точка Аксонометрическое проецирование — искомая аксонометрическая проекция точки А.

Со всего множества аксонометрических проекций на практике применяются преимущественно такие:

а) прямоугольная изометрия (см. п. 6.2.1);

б) прямоугольная диметрия (см. п. 6.2.2);

в) косоугольная горизонтальная изометрия (см. п. 6.3.1);

г) косоугольная фронтальная изометрия (см. п. 6.3.1);

д) косоугольная фронтальная диметрия (см. п. 6.3.2).

Эти виды аксонометрического проецирования широко используются в машиностроении, строительстве и архитектуре.

Прямоугольное аксонометрическое проецирование

Способ аксонометрического проецирования состоит в том, что данный предмет вместе с осями прямоугольных координат, к которым эта система относится в пространстве, параллельно проецируется на некоторую плоскость α .

Прямоугольная изометрия

Для прямоугольных аксонометрических проекций (φ = 90°) из формулы (6.1) получаем основное соотношение

Аксонометрическое проецирование

Углы Аксонометрическое проецирование наклона осей Аксонометрическое проецирование к горизонту (рис. 6.1 б) определяются по таким формулам:

Аксонометрическое проецирование

Прямоугольная изометрия (от греческого ισοµετρία – соизмеримость) – вид прямоугольного аксонометрического проецирования, в котором коэффициенты искажения k по осям одинаковы.

Из формулы (6.2) для случая Аксонометрическое проецирование имеем Аксонометрическое проецирование откуда Аксонометрическое проецирование ≈ 0,816. При этом по формулам (6.3) углы Аксонометрическое проецирование (рис. 6.3).

Аксонометрическое проецирование

Аксонометрическое проецированиеПрямоугольная изометрия

На практике с целью упрощения коэффициенты k условно считают равными единице (k = 1). Это приводит к тому, что все действительные размеры геометрических объектов увеличиваются на 23 % (1/0,816 = 1,23).

На рис. 6.4 б построена прямоугольная изометрия призмы, комплексный чертёж которой показан на рис. 6.4 а.

Аксонометрическое проецирование

Аксонометрическое проецированиеПрямоугольная изометрия призмы

Для построения аксонометрической проекции геометрического объекта удобно ввести локальную систему координат (от англ. local – местный) – систему координат, связанную с заданным телом. Например, на рис. 6.4 а выбрана локальная ортогональная система координат x, y, z с центром О, совпадающим с геометрическим центром основы (пятиугольника) призмы.

На рис. 6.5 а – е построены точные и приближённые прямоугольные изометрические проекции окружностей горизонтального, фронтального и профильного уровней. Например, прямоугольной изометрией окружности горизонтального уровня диаметром d является эллипс с горизонтальной осью Аксонометрическое проецирование длиной 1,22d и вертикальной осьюАксонометрическое проецирование длиной 0,71d. Этот эллипс вписан в ромб с углами при вершинах 60°, 120°.

Длины всех сторон ромба равны диаметру d заданной окружности. На практике искомый эллипс заменяется овалом (рис. 6.5 г), построенным так. Строится окружность диаметром d с центром в начале отсчёта Аксонометрическое проецирование Определяются точки Аксонометрическое проецирование пересечения этой окружности с осями Аксонометрическое проецирование аксонометрической системы координат. Определяются точки Аксонометрическое проецирование пересечения окружности с осью Аксонометрическое проецирование Строятся точки Аксонометрическое проецирование пересечения отрезков Аксонометрическое проецирование с горизонтальной линией, проходящей через центр Аксонометрическое проецирование окружности. Из точек Аксонометрическое проецирование проводятся дуги Аксонометрическое проецирование радиусом Аксонометрическое проецирование Из точек Аксонометрическое проецирование проводятся дуги Аксонометрическое проецирование радиусом Аксонометрическое проецирование. Полученный овал Аксонометрическое проецированиеявляется приближённой изометрической проекцией  окружности горизонтального уровня. Длина горизонтальной оси овала меньше соответствующей оси Аксонометрическое проецирование эллипса на 6 %. Длина вертикальной оси овала больше соответствующей оси Аксонометрическое проецирование эллипса на 4 %.

На рис. 6.5 б – в, д – е приведены точные и приближённые прямоугольные изометрические проекции окружности фронтального и профильного уровней. Отличие этих проекций от проекций окружности горизонтального уровня состоит в том, что большая ось эллипса (или овала) размещена под углом 60° к горизонту.

Аксонометрическое проецирование

Аксонометрическое проецированиеПрямоугольная изометрия окружности

Прямоугольная диметрия

Прямоугольная диметрия (от греческого δυο – два, µετρο – мера) – вид прямоугольного аксонометрического проецирования, в котором коэффициенты искажения Аксонометрическое проецирование по осям x, z одинаковы Аксонометрическое проецирование а Аксонометрическое проецирование по оси у вдвое меньше Аксонометрическое проецирование

Из формулы (6.2) для случая Аксонометрическое проецирование имеем Аксонометрическое проецирование откудаАксонометрическое проецированиеАксонометрическое проецирование При этом по формулам (6.3) углы Аксонометрическое проецирование Аксонометрическое проецирование (рис. 6.6). Эти углы удобно строить так. Из точки Аксонометрическое проецирование влево откладывается отрезок длиной 8l, где l –условная длина (произвольное значение). От полученной точки вниз откладывается отрезок длиной l. Через полученную точку и начало отсчёта Аксонометрическое проецирование проходит ось х. Для построения оси у из точки Аксонометрическое проецирование вправо откладывается отрезок длиной 8l. От полученной точки вниз откладывается отрезок длиной 7l. Через полученную точку и начало отсчёта Аксонометрическое проецирование проходит ось у (рис. 6.7).

Аксонометрическое проецирование

Аксонометрическое проецированиеПрямоугольная димметрия

Аксонометрическое проецирование

Аксонометрическое проецированиеПостроение осей координат

На практике с целью упрощения коэффициенты k условно считают равными единице по осям х, z и 0,5 по оси у. Это приводит к тому, что все действительные размеры геометрических объектов увеличиваются на 6 % (1/0,943 = 1,06; 0,5/0,471 = 1,06).

На рис. 6.8 б построена прямоугольная диметрия пирамиды, комплексный чертёж которой показан на рис. 6.8 а.

Аксонометрическое проецирование

Аксонометрическое проецированиеПрямоугольная диметрия пирамиды

На рис. 6.9 а – е построены приближённые прямоугольные изометрические проекции окружностей горизонтального, фронтального и профильного уровней. Например, прямоугольной изометрией окружности  горизонтального уровня диаметром d является эллипс со взаимно перпендикулярными осями Аксонометрическое проецирование длиной соответственно 1,06d, 0,35d. Этот эллипс вписан в параллелограмм со сторонами d, 0,5d, наклонёнными под углами 7°11/ , 41°25/ к горизонту. На практике искомый эллипс заменяется овалом (рис. 6.9 г), построенным  таким способом. Строится окружность диаметром d с центром в начале отсчёта Аксонометрическое проецирование Определяются точки Аксонометрическое проецирование пересечения этой  окружности с осью Аксонометрическое проецирование аксонометрической системы координат. Точки Аксонометрическое проецирование отображаются симметрично  горизонтальной оси. Определяются точки Аксонометрическое проецирование оси Аксонометрическое проецирование удалённые от точек Аксонометрическое проецирование на расстояние d. Строятся точки Аксонометрическое проецирование Аксонометрическое проецирование пересечения отрезков Аксонометрическое проецирование с горизонтальной линией, проходящей через центр Аксонометрическое проецирование окружности.

Из точек Аксонометрическое проецирование проводятся дуги Аксонометрическое проецирование радиусом Аксонометрическое проецирование Из точек Аксонометрическое проецирование проводятся дуги Аксонометрическое проецирование радиусом Аксонометрическое проецирование Полученный овал Аксонометрическое проецирование является приближённой диметрической проекцией окружности горизонтального уровня. Длина горизонтальной оси овала больше соответствующей оси Аксонометрическое проецирование эллипса на 4 %. Длина вертикальной оси овала больше соответствующей оси Аксонометрическое проецирование эллипса на 10 %. На рис. 6.9 б – в, д – е приведены прямоугольные диметрические проекции  окружности фронтального и профильного уровней. Отличие прямоугольной диметрии  окружности фронтального уровня от проекций окружностей горизонтального и профильного уровней состоит в том, что параллелограмм имеет одинаковые стороны длиной d. Большая ось овала на 1 % меньше  большей оси эллипса; меньшая ось овала больше  меньшей оси эллипса на 1 %.

Аксонометрическое проецирование

Аксонометрическое проецированиеПрямоугольная диметрия окружности

Косоугольное аксонометрического проецирования

Косоугольные аксонометрические проекции характеризуются двумя основными признаками: плоскость аксонометрических проекций располагается параллельно одной из граней предмета, которая изображается без искажения; направление проецирования выбирается косоугольное (составляет с плоскостью проекций острый угол), что дает возможность спроецировать и две другие грани или стороны предмета, но уже с искажением.

Косоугольная изометрия

Косоугольная изометрия – вид косоугольного аксонометрического проецирования, в котором коэффициенты искажения k по осям одинаковы. На практике используют коэффициенты k = 1.

Используются такие виды косоугольной изометрии:

а) горизонтальная изометрия, для которой углы Аксонометрическое проецирование = 60°; Аксонометрическое проецирование = 30°;

б) фронтальная изометрия, для которой углы Аксонометрическое проецирование = 0°, Аксонометрическое проецирование = 45°.

На рис. 6.10 а – б показана косоугольная горизонтальная изометрия точки и призмы, на рис. 6.11 а – в – окружностей горизонтального, фронтального и профильного уровней.

Аксонометрическое проецирование

Аксонометрическое проецированиеКосоугольная горизонтальная изометрия

Косоугольная горизонтальная изометрия окружности диаметром d горизонтального уровня является окружностью такого же диаметра (рис. 6.11 а). Косоугольные горизонтальные изометрии окружности диаметром d фронтального и профильного уровней являются эллипсами, вписанными в ромбы со сторонами d (рис. 6.11 б – в).

Аксонометрическое проецирование

Аксонометрическое проецирование Косоугольная горизонтальная изометрия окружности

На рис. 6.12 а – б показана косоугольная фронтальная изометрия точки и призмы, на рис. 6.13 а – в – окружностей горизонтального, фронтального и профильного уровней. Косоугольная фронтальная изометрия окружности диаметром d фронтального уровня является окружностью такого же диаметра (рис. 6.13 б). Косоугольные фронтальные изометрии окружностей диаметром d горизонтального и профильного уровней являются эллипсами, вписанными в ромбы, стороны которых равны d (рис. 6.13 а, в).

Аксонометрическое проецирование

Аксонометрическое проецированиеКосоугольная фронтальная изометрия

Аксонометрическое проецирование

Аксонометрическое проецированиеКосоугольная фронтальная изометрия окружности

Косоугольная диметрия

Косоугольная диметрия – вид косоугольного аксонометрического проецирования, в котором коэффициенты искажения k по осям х, z одинаковы, а по оси у – вдвое меньший (0,5k). На практике применяют фронтальную диметрию, для которой k = 1, а углы Аксонометрическое проецирование = 0°; Аксонометрическое проецирование = 45°. На рис. 6.14 а – б показана косоугольная фронтальная диметрия точки и призмы, на рис. 6.15 а – в – окружностей горизонтального, фронтального и профильного уровней.

Аксонометрическое проецирование

Аксонометрическое проецированиеКосоугольная диметрия

Косоугольная фронтальная диметрия окружности диаметром d фронтального уровня является окружностью такого же диаметра (рис. 6.15 б). Косоугольные фронтальные диметрии окружности диаметром d горизонтального и профильного уровней являются эллипсами, вписанными в параллелограммы со сторонами d, d/2 (рис. 6.15 а, в).

Аксонометрическое проецирование

Аксонометрическое проецированиеКосоугольная диметрия окружности

Допускается построение фронтальной диметрии с углом Аксонометрическое проецирование = 30°. На рис. 6.16 а – б показана эта разновидность косоугольной фронтальной диметрии точки и призмы, на рис. 6.17 а – в – окружностей горизонтального, фронтального и профильного уровней.

Аксонометрическое проецирование

Аксонометрическое проецированиеРазновидность косоугольной фронтальной диметрии

Аксонометрическое проецирование

Аксонометрическое проецированиеРазновидность косоугольной фронтальной диметрии окружности

Решение позиционных задач

Позиционные задачи – это задачирешение, которых должно давать ответ на вопрос о взаимном расположении геометрических объектов как по отношению друг к другу, так и относительно системы координатных плоскостей проекций.

Пересечение прямой с плоскостью. пересечение двух плоскостей

Способ аксонометрического проецирования можно применить для решения задач начертательной геометрии.

Преимущества способа аксонометрического проецирования:

а) решение позиционных задач сопровождается наглядными изображениями предметов;

б) задачи решаются с помощью только одной аксонометрической проекции.

Недостатки способа аксонометрического проецирования:

а) сложность построения аксонометрических проекций геометрических объектов;

б) сложность или невозможность решения метрических задач;

в) необходимость в некоторых случаях дополнения аксонометрического изображения другой проекцией.

Для решения задач способом аксонометрического проецирования используется, как правило, прямоугольная изометрия.

На рис. 6.18*( * в дальнейшем верхний индекс Аксонометрическое проецирование не обозначается с целью упрощения обозначений) с помощью прямоугольной изометрии решена задача на нахождение пересечения прямой l с плоскостью Σ, заданной следами Аксонометрическое проецирование Через прямую l проводится горизонтально-проецирующая плоскость  (след Аксонометрическое проецирование параллельный оси z, след Аксонометрическое проецирование совпадает с горизонтальной проекцией l1 прямой l). По вспомогательным точкам 1, 2 строится прямая k пересечения плоскостей Σ, Ω. Точка K пересечения прямых l, k — искомая точка пересечения прямой l с плоскостью Σ.  

На рис. 6.19 способом аксонометрического проецирования определяется линия пересечения плоскостей Σ, Ω, заданных следами. Определены точки 1, 2 пересечения двух пар одноимённых следов. Искомая линия k пересечения проходит через точки 1, 2. 

Аксонометрическое проецирование

Аксонометрическое проецированиеПересечение прямой с плоскостью Аксонометрическое проецированиеПересечение двух плоскостей

Пересечение тела плоскостью

На рис. 6.20 построена линия пересечения треугольной призмы плоскостью общего положения, заданной следами. Определяются точки 1 – 5 пересечения следов плоскости с рёбрами (точка 1) и гранями (точки 2 –5) призмы. Точки 4, 5 определены с помощью вспомогательных вертикальных линий, принадлежащих граням призмы.

Аксонометрическое проецирование

Аксонометрическое проецированиеПересечение многогранника плоскостью Аксонометрическое проецированиеПересечение тела вращения плоскостью

На рис. 6.21 построена линия пересечения цилиндра плоскостью общего положения. Для её определения вводятся вспомогательные секущие плоскости Аксонометрическое проецирование фронтального уровня, пересекающие цилиндр по прямоугольникам, а плоскость – по прямым линиям. Точки 1 – 5 пересечения этих прямоугольников с соответствующими прямыми — точки искомой линии пересечения цилиндра плоскостью.

Пересечение двух тел

На рис. 6.22 построена линия пересечения цилиндра с призмой. Для её определения используются секущие плоскости Аксонометрическое проецирование профильного уровня, пересекающие цилиндр и призму по прямоугольникам. Точки 1 – 6 пересечения пар прямоугольников принадлежат искомой линии пересечения данных тел.

Аксонометрическое проецирование

Аксонометрическое проецированиеПересечение тела вращения с многогранником Аксонометрическое проецированиеПересечение двух тел  вращения

На рис. 6.23 построена линия пересечения конуса с цилиндром. Для её определения применяются фронтально-проецирующие секущие плоскости Аксонометрическое проецирование проходящие через вершину S конуса. Эти плоскости пересекают конус по треугольникам, а цилиндр – по прямоугольникам. Точки 1 – 8 пересечения этих треугольников с соответствующими прямоугольниками принадлежат искомой линии пересечения конуса с цилиндром.

Преобразование аксонометрических проекций

Между аксонометрическими и ортогональными проекциями существует связь, которая позволяет переходить вот одного способа проецирования к другому и определять направление проецирования. Процедура такого перехода осуществляется с помощью построения треугольника следов картинной плоскости Аксонометрическое проецирование

На рис. 6.24 а построена система осей xАксонометрическое проецирование прямоугольной изометрии с центром в точке Аксонометрическое проецирование На оси Аксонометрическое проецирование произвольно выбирается точка Аксонометрическое проецирование , через которую проводятся отрезки Аксонометрическое проецирование первый из которых перпендикулярен  оси Аксонометрическое проецирование второй –  оси Аксонометрическое проецирование . Точки  , Аксонометрическое проецированиепринадлежат соответственно осям Аксонометрическое проецирование Полученный треугольник Аксонометрическое проецирование является треугольником следов Аксонометрическое проецирование картинной плоскости Аксонометрическое проецирование Для определения натуральной величины треугольника Аксонометрическое проецирование последний совмещается с горизонтальной плоскостью проекций П1 (см. п. 2.4.3, рис. 2.39 – 2.40). При этом точка Аксонометрическое проецирование вращается вокруг горизонтального следа Аксонометрическое проецированиедо положения О. Вдоль отрезков Аксонометрическое проецирование проводятся оси х, у горизонтальной плоскости проекций П1 с центром в точке О (угол хОу прямой). Центром вращения является точкаАксонометрическое проецирование радиусом – длина отрезка Аксонометрическое проецирование

Для определения проекции А1 произвольной точки А по аксонометрической проекции Аксонометрическое проецирование в картинной плоскости Аксонометрическое проецированиестроится луч Аксонометрическое проецирование и находится точка Аксонометрическое проецирование его пересечения с осью  вращения Аксонометрическое проецирование Проекция А1 является точкой пересечения отрезкаАксонометрическое проецирование с линией Аксонометрическое проецирование направления вращения, перпендикулярной  оси вращения Аксонометрическое проецирование

Положения плоскостей проекций П2, П3 находятся аналогично, путём вращения картинной плоскости Аксонометрическое проецированиевокруг следов Аксонометрическое проецирование соответственно (рис. 6.24 б – в).

Аксонометрическое проецирование

Аксонометрическое проецирование

Аксонометрическое проецированиеСовмещение картинной плоскости с плоскостями проекций

Аксонометрические проекции с примерами посмотроения

Аксонометрические проекции — это способ изображения геометрических предметов на чертеже при помощи параллельных проекций.

Для изображения на плоскости какого-либо предмета используют:

а) обычный рисунок;

б) способ перспективного изображения, осно­ванный на методе центрального проецирования;

в) чертеж, состоящий из прямоугольных (орто­гональных) проекций;

г) аксонометрические проекции.

Обычный рисунок изображает предмет, как он представляется глазу наблюдателя (рис. 131). Способ перспективного изображения используют при создании архитектурных проектов (рис. 132). Применение рисунка в производстве неудобно, так как он искажает форму и размеры предмета.

Аксонометрическое проецирование

Рис. 131

Аксонометрическое проецирование

Рис. 132

Чертеж дает представление о форме и размерах предмета, но часто уступает в наглядности. В этих случаях дают дополнительно изображение этого предмета в аксонометрической проекции.

На рис. 133, а приведены ортогональные проек­ции предмета, по которым довольно трудно представить его форму. Значительно нагляднее ак­сонометрическая проекция этого предмета (рис. 133, 6).

Аксонометрическое проецирование

Рис. 133

Рассмотрим способ получения аксонометричес­ких проекций

На рис. 134 изображен в трех проекциях куб. Все три видимые его грани 1, 2, 3 про­ецируются без искажения. На рис. 135, а тот же куб поставлен относительно наблюдателя под углом и изображен в перспективе. Мы видим все три грани 1. 2, 3 одновременно, но все грани и ребра изображены с искаже­нием. Однако можно спроецировать куб так, чтобы видеть в проекции три грани куба с мень­шим искажением.

Аксонометрическое проецирование

Рис. 134

Для этого куб располагаем внутри трехгранного угла, образованного плоскостями проекций Н, V и W (рис. 135, б). Куб вместе с плоскостями про­екций спроецирован на аксонометрическую плос­кость проекции РV. Поэтому оси обозначаются со штрихами, т.е. х’, у’, z‘. Далее в обозначении штрихи убираем.

Аксонометрическое проецирование

Рис. 135

Таким образом, мы подошли к способу построе­ния аксонометрических проекций. Остается опре­делить, на какой угол целесообразнее всего повер­нуть предмет.

ГОСТ 2.317—69 устанавливает аксонометрические проекции, применяемые в чертежах всех отраслей промышленности и строительства (рис. 136).

В зависимости от направления проецирующих прямых и искажения линейных размеров предме­та аксонометрические проекции делятся на прямо­угольные и косоугольные.

Если проецирующие прямые перпендикулярны аксонометрической плоскости проекции, то такая проекция называется прямоугольной аксонометри­ческой проекцией. К прямоугольным аксономет­рическим проекциям относятся изометрическая (рис. 136. а, б) и диметрическая (рис. 136, в, г) проекции.

Если проецирующие прямые направлены не под углом 900 к аксонометрической плоскости проек­ций, то получается косоугольная аксонометрическая проекция. К косоугольным аксонометричес­ким проекциям относятся фронтальная изометри­ческая (рис. 136, д, е), горизонтальная изометри­ческая (рис. 136, ж, з) и фронтальная диметрическая (рис. 136, и, к) проекции.

Прямоугольные аксонометрические проекции дают наиболее наглядные изображения и поэтому чаще применяются в машиностроительном черче­нии.

Виды аксонометрических проекций, расположение аксонометрических осей и коэффициенты искажения линейных размеров показаны на рис. 136.

Аксонометрическое проецирование

Рис. 136

Изометрическая проекция отрезков и плоских фигур

На рис. 136, а и б представлена изометрическая проекция.

Рассмотрим построение изометрической проекции куба.

Как и при ортогональном (прямоугольном) проецировании, куб расположен внутри трехгран­ного угла, образованного плоскостями проекций Н, V и W. В прямоугольной изометрической про­екции оси х, у, z расположатся под углом 1200 друг к другу. Все три коэффициента искажения по аксонометрическим осям одинаковы и равны 0,82, поэтому длина ребер куба на изображении одинаковая и равна 0,82 действительной длины. Обычно для упрощения построений такого сокра­щения не делают; отрезки, параллельные аксоно­метрическим осям, откладывают действительной длины.

Простейшим элементом является точка, поэто­му построение изометрических проекций начнем с точки.

Если даны ортогональные проекции точек А и В (рис. 137, а), то известны их координаты. Для построения изометрической проекции этих точек проводят аксонометрические оси х, у и z под углом 1200 друг к другу (рис. 137, б). Далее от начала координат О по оси х откладывают отре­зок, равный координате хB точки В, в данном примере хB = 39 мм. Получим точку 1.

Из точки 1 проводят прямую, параллельную оси у, и на ней откладывают отрезок, равный координате yB, точку 2. Из точки 2 проводят пря­мую, параллельную оси z, на которой отклады­вают отрезок, равный координате zB. Полученная точка В — искомая изометрическая проекция точ­ки В.

Аналогично строят изометрическую проекцию точки А. Так как координата z точки А равна нулю, то достаточно отложить координаты х и у (по соответствующим осям) точки А.

Аксонометрические оси изометрической проек­ции, а также отрезки прямых, параллельные этим осям, удобно строить с помощью угольника с уг­лами 30 и 600 (рис. 137, а).

Аксонометрическое проецирование

Рис. 137

Изометрическая проекция отрезка прямой АВ может быть легко построена по двум точкам — концам этого отрезка. Найдя по координатам изометрические проекции этих точек, соединим их прямой линией. По точкам может быть выпо­лнена изометрическая проекция любой фигуры. При этом расположение фигур относительно оси х, у и z может быть различным.

Рассмотрим, например, построение изометри­ческой проекции правильных пятиугольников (рис. 138). В этом случае для упрощения построе­ний рассматриваются пятиугольники, расположен­ные на плоскостях проекций Н, V, W. Тогда одна из координат вершин пятиугольника будет равна нулю и изометрическую проекцию каждой верши­ны можно строить по двум координатам, подобно построению точки А ( см. рис. 137, б).

Построив изометрические проекции вершин, соединяем их прямыми и получаем изометричес­кую проекцию прямоугольника.

Аксонометрическое проецирование

Рис. 138

Изометрическая проекция окружности

На рис. 139 изображена изометрическая проек­ция куба с окружностями, вписанными в его гра­ни. Квадратные грани куба будут изображаться в виде ромбов, а окружности в виде эллипсов. Надо запомнить, что малая ось CD каждого эллипса всегда должна быть перпендикулярна большой оси АВ.

Если окружность расположена в плоскости, параллельной плоскости Н, то большая ось АВ должна быть перпендикулярна оси z, а малая ось CD— параллельна оси z (рис. 139).

Если окружность расположена в плоскости, параллельной плоскости V, то большая ось эллип­са должна быть проведена под углом 900 к оси у.

При расположении окружности в плоскости, параллельной плоскости W, большая ось эллипса располагается под углом 900 к оси х.

Заметим, что большие оси всех трех эллипсов направлены по большим диагоналям ромбов.

При построении изометрической проекции ок­ружности без сокращения по осям х, у и z длина большой оси эллипсов берется равной 1,22 диа­метра d изображаемой окружности, а длина малой оси эллипса — 0,71 d (рис. 139).

Аксонометрическое проецирование

Рис. 139

В учебных чертежах вместо эллипсов рекомен­дуется применять овалы, очерченные дугами ок­ружностей. Упрощенный способ построения ова­лов приведен на рис. 140.

Для построения овала соответствующей изометрической проекции окружности, параллельной плоскости Н, проводят вертикальную и горизон­тальную оси овала (рис. 140, а). Из точки пересе­чения осей О проводят вспомогательную окруж­ность диаметром d, равным действительной вели­чине диаметра изображаемой окружности, и нахо­дят точки n1, n2. n3, n4 пересечения этой окруж­ности с аксонометрическими осями х и у. Из то­чек m1 и m2 пересечения вспомогательной окруж­ности с осью z, как из центров радиусом R = m1* n3, проводят две дуги 23 и 14, принадлежащие овалу. Пересечения этих дуг с осью z дают точки С и D.

Из центра О радиусом ОС, равным половине малой оси овала, засекают на большой оси овала АВ точки О1 и О2. Точки 1, 2, 3 и 4 сопряжений дуг радиусов R и R1 находят, соединяя точки mt и т2 с точками O1 и О2 и продолжая прямые до пересечения с дугами 23 и 14. Из точек O1 и О2 радиусом R1=0,1 проводят две дуги.

Так же строят овалы. расположенные в плос­костях, параллельных плоскостям V и W (рис. 140, б и в).

Аксонометрическое проецирование

Рис. 140

Изометрическая проекции геометрических тел 

Изображение геометрического тела в изометри­ческой проекции, например правильной шести­угольной призмы, выполняют и такой последова­тельности (рис. 141).

Если основные призмы — правильный много­угольник (например, шестиугольник), то построе­ние вершин основания по координатам можно упростить, проведя одну из осей координат через центр основания. На рис. 141 оси х, у и z проведе­ны через центры правильных шестиугольников призмы.

Построив изометрическую проекцию основания призмы, из вершин шестиугольника основания проводим прямые, параллельные соответственно осям х, у или z (для каждой из рассматриваемых на рис. 141 призм). На этих прямых от вершин основания отложим высоту призмы и получим точки 1, 2, 3, 4, 5, 6 вершин другого основания призмы. Соединив эти точки прямыми, получим изометрическую проекцию призмы. В заключение устанавливаем видимые и невидимые линии; не­видимые линии надо проводить штриховыми ли­ниями.

Аксонометрическое проецирование

Рис. 141

На рис. 142 показано построение изометричес­кой проекции плоской детали криволинейного очертания по комплексному чертежу. Деталь (рис. 142, а и б) расположена параллельно фронтальной плоскости проекций. На фронтальной проекции комплексного чертежа намечают ряд точек и строят их на изометрической проекции (рис. 142, в).

Через построенные точки контура кулачка про­водят по лекалу кривую линию.

Параллельно оси у от найденных точек проводят прямые линии, на которых отклады­вают отрезки, равные А (толщине детали). Соединяя новые точки, получают контур дру­гой плоскости детали, который также обводят по лекалу.

Аксонометрическое проецирование

Рис. 142

Аналогично строят по чертежу изометрическую проекцию кулачка.

На рис. 143 показано построение изометричес­кой проекции (рис. 143, в) неправильной пятиу­гольной пирамиды по ее комплексному чертежу (рис. 143, а). Определяем координаты всех точек основания пирамиды, затем по координатам x и y строим изометрическую проекцию пяти точек — вершин основания пирамиды А, В, С. D, Е. Например, изометрическая проекция точки А получается следующим образом.

По оси х от намеченной точки О откладываем координату хАad. Из конца ее провопим пря­мую, параллельную оси у, на которой откладыва­ем вторую координату этой точки уА = ad.

Далее строят по координатам высоту пирамиды и получают точку S — вершину пирамиды. Соеди­няя точку S с точками А. В. С, D н Е, получают изометрическую проекцию пирамиды.

Аксонометрическое проецирование

Рис. 143

Последовательность построения изометрической проекции детали по данному комплексному черте­жу (рис. 144, а) показана на рис. 144, (6 — г). Деталь мысленно разделяют на отдельные простей­шие геометрические элементы, в данном случае на призматические элементы (рис. 144, б). Нахо­дят центры окружностей (рис. 144, в). Затем уда­ляют лишние построения, контур изображения обводят сплошной основной линией (рис. 144, г).

Аксонометрическое проецирование

Рис. 144

Для выявления внутренней формы предмета применяют вырез одной четверти детали. Вырез в аксонометрических проекциях можно строить двумя способами.

Первый способ. Вначале строят в тонких линиях аксонометрическую проекцию (рис. 145, а). Затем выполняют вырез, направляя две секущие плоскости по осям х и у (рис. 145, б). Удаляют часть изображаемого предмета (рис. 145, в), после чего штрихуют сечения и обводят изображение сплошными толстыми лини­ями (рис. 145, г).

Аксонометрическое проецирование

Рис. 145

Второй способ построения разреза при изображении деталей и аксонометрической проекции показан на рис. 146, а. Сначала строят аксонометрические проекции фигур сечения, а затем дочерчивают части изобра­жения предмета, расположенные за секущими плоскостями (рис. 146. б).

Второй способ упрощает построение, освобожда­ет чертеж от лишних линий.

Аксонометрическое проецирование

Рис. 146

Линии штриховки сечений в аксонометрических проекциях наносят, как показано на рис. 147, а, параллельно диагоналям проекции квадратов, которые лежат в плоскостях проекций и стороны которых параллельны аксонометрическим осям.

Штриховку сечений к изометрической проекции удобно выполнять угольником с углами 30 и 600 (рис. 147, б).

Аксонометрическое проецирование

Рис. 147

Изометрическая проекция шара (рис. 148) вы­полняется следующим образом. Из намеченного центра О проводят окружность диаметра, равною 1,22d (d — диаметр шара); это и будет изображе­ние шара в изометрической проекции.

Если требуется построить половину, четверть или три четверти шара, то необходимо сначала вычертить овалы (рис. 148), большие оси которых АВ и CD перпендикулярны осям z и у. Тогда овалы и точки т и п пересечения этих овалов опре­делят границы трех четвертей шара.

Аксонометрическое проецирование

Рис. 148

Диметрическая проекция

В диметрической проекции ось z — вертикаль­ная; ось х расположена под утлом 7010′, а ось у — под утлом 41025′ к горизонтальной прямой (см. рис. 136, в и г).

Коэффициенты искажения по осям х и z равны 0.94. а по оси у — 0,47, но обычно отрезки пря­мых по осям х и у откладывают без искажения, а по оси у коэффициент искажения берут 0,5.

Все отрезки прямых линий предмета, которые были параллельны осям х, у и z на комплексном чертеже, останутся параллельными соответствую­щим осям в диметрической проекции.

Положение плоскости фигуры относительно осей диметрической проекции может быть различ­ным. На рис. 149 показано, как изменяется изо­бражение фигуры и диметрии

 в зависимости от того, на какой из плоскостей проекций расположена фигура. Это изменение вызывается тем об­стоятельством, что при построении вершин много­угольника их координаты по оси у в диметрической проекции сокращаются вдвое против действительной величины. Например, высота h фигуры, расположенной в плоскости H. и длина l фигуры, расположенной в плоскости W, уменьшаются в два раза.

Аксонометрическое проецирование

Рис. 149

В диметрической проекции изображения гео­метрических тел строят так же, как в изометри­ческой. с учетом коэффициента искажения по оси у.

На рис. 150 показано изображение треугольной призмы в диметрической проекции. Если ребра призмы параллельны оси х или z, то размер их высоты нс меняется, но искажается форма основа­ния. При расположении ребер параллельно оси у сокращается вдвое их высота.

Аксонометрическое проецирование

Рис. 150

Диметрическая проекция окружности

Окружности в диметрической проекции изобра­жаются в виде эллипсов. Большая ось АВ эллип­сов во всех случаях равна 1,06 d, где d — диаметр окружности. Малые оси CD эллипсов, располо­женных на плоскостях, параллельных плоскости проекций W и H, равны 0,35 d, а на плоскости, параллельной плоскости V, — O.95 d (рис. 151 ).

Аксонометрическое проецирование

Рис. 151

В диметрической проекции окружности эллип­сы иногда заменяются овалами. На рис. 152 при­ведены примеры построения диметричеcких про­екций окружностей, где эллипсы заменены овала­ми, построенными упрошенным способом.

Разберем упрощенное построение диметрической проекции окружности, расположенной параллельно фронтальной плоскости проекций (рис. 152, а).

Через точку О проводим оси, параллельные осям х и z. Из центра О радиусом, равным радиу­су данной окружности, проводим вспомогательную окружность, которая пересекается с осями х и z в точках 1, 2, 3, 4.

Из точек 1 и 3 (по направлению стрелок) про­водим горизонтальные линии до пересечения с осями АВ и CD овала и получаем точки О1  О2О3 и О4. Приняв за центры точки О1 и О4 радиу­сом R = О41, проводим дуги 12 и 34. Приняв за центры точки О2 и О3, проводим радиусом R1= 022 замыкающие овал дуги 23 и 14. Большая ось АВ овала примерно будет равняться 1.06d, а малая CD— 0,95d.

Построение диметрической проекции окружнос­ти, лежащей в плоскости, параллельной профиль­ной плоскости проекции W, приведено на рис. 152, б.

Из центра О проводим прямые, параллельные осям х и z, а также большую ось овала AB пер­пендикулярно малой оси CD. CD параллельна оси х. Из точки О радиусом, равным радиусу данной окружности, проводим вспомогательную окруж­ность и получаем точки п и п1.

На прямой, параллельной оси х, вправо и влево от центра О откладываем отрезки, равные диамет­ру вспомогательной окружности, и получаем точ­ки О1 и О2. Приняв эти точки за центры, прово­дим (по направлению стрелок) радиусом R = Otn = О2n1 дуги овалов. Пересечения получен­ных дуг с вспомогательной окружностью дают точки n2 и n3. Соединяя точки О2 и n1, О2 и n2 прямыми на линии большой оси АВ овала, полу­чим точки О3 и О4. Приняв их за центры, проводим радиусом R, замыкающие овал дуги.

На рис. 152, в показано аналогичное упрошен­ное построение диметрнческой проекции окруж­ности, расположенной в плоскости, параллельной горизонтальной плоскости проекций.

Аксонометрическое проецирование

Рис. 152

Выполнение диметрических проекций деталей

Последовательность выполнения детали в диметрической проекции показана на рис. 153.

Деталь мысленно разделяют на отдельные про­стейшие геометрические элементы, в данном при­мере — на прямоугольные параллелепипеды (рис. 153, а). По оси у откладывают половину соответствующей длины ребра.

Далее находят положения центров отверстий в детали, используя метод координат, и строят ова­лы. Разрез детали выполняют по двум плос­костям. параллельным плоскостям V и W. На таком разрезе видно, что отверстия с верти­кальными и горизонтальными осями — цилиндрические сквозные. Затем удаляют линии по­строения, контур изображения обводят сплош­ной основной линией (рис. 153, б) и штрихуют сечения (рис. 153, в).

Аксонометрическое проецирование

Рис. 153

Фронтальная изометрическая проекция

Положение аксонометрических осей при изо­бражении предметов в фронтальной изометричес­кой проекции показано на рис. 136, д и е.

Фронтальную изометрическую проекцию выполняют без искажения по осям х, у и z. Все изобра­жения, лежащие в плоскостях, параллельных фронтальной плоскости проекций, изображаются без искажения (рис. 136, д, е и рис. 154, а).

Окружности, расположенные в плоскостях, параллельных фронтальной плоскости проекций, проецируются на аксонометрическую плоскость проекции в окружности без искажения по осям.

Окружности, лежащие в плоскостях, парал­лельных плоскостям проекций Н и W, проециру­ются в эллипсы.

Для построения эллипсов из центров О радиу­сом, равным радиусу данной окружности, прово­дим вспомогательные окружности. Через центры О проводят прямые под утлом 22030′ к аксономет­рическим осям х и z и от центра откладывают большие оси эллипсов. Малые оси эллипсов до­лжны быть перпендикулярны большим.

Длина большой оси эллипса равна 1,3d, а ма­лой — 0.54d, где d ~ диаметр окружности.

Предмет во фронтальной изометрической про­екции следует располагать относительно осей так, чтобы окружности дуги плоских кривых находи­лись в плоскостях, параллельных фронтальной плоскости проекций (рис. 154, б). Тогда построе­ние их упрощается, так как они изображаются без искажений.

Аксонометрическое проецирование

Рис. 154

Горизонтальная изометрическая проекция

Положения аксонометрических осей горизон­тальной изометрической проекции показаны на рис. 136, ж и з.

В горизонтальной изометрической проекции линейные размеры предметов изображаются без искажения по всем трем осям. При построении осей пользуются угольниками с углами 30 и 600, как показано на рис. 155, а.

Окружность, расположенная в плоскости, па­раллельной плоскости Н, проецируется в окруж­ность того же диаметра (рис. 155, б, окружность 2). Окружности, лежащие в плоскостях, парал­лельных плоскостям проекций V и W,— в эллип­сы (рис. 155, б, эллипсы 1 и 3).

Большая ось эллипса 1 равна 1.37d, а малая — 0,37d (d — диаметр изображаемой окружности). Большая ось эллипса 3 равна 1,22d, а малая — 0,71d.

На рис. 155, в изображена деталь в горизон­тальной изометрической проекции.

Аксонометрическое проецирование

Рис. 155

Косоугольная фронтальная диметрическая проекция

Положения аксонометрических осей фронталь­ной диметрической проекции показаны на рис. 136, и и к. Допускается применять фронталь­ные диметрические проекции с углом наклона оси у 30 и 600. Длина отрезков прямых, отложенных в направлении осей х и z, выполняется без иска­жения, а в направлении оси у линейные размеры сокращают вдвое (см. рис. 136, и и к). Эго можно видеть и на рис. 156, а—в, где даны фронтальные проекции призм и пирамиды. На рис. 156, а осно­вание призмы (правильный шестиугольник) иска­жено, а на рис. 156, в — без искажения.

Окружность, лежащая в плоскости, параллель­ной фронтальной плоскости проекций (см. рис. 136, и и к), проецируется на аксонометричес­кую плоскость проекций в окружность того же диаметра, а окружности, лежащие в плоскостях, параллельных профильной и горизонтальной плос­костям проекций, — в эллипсы. Большая ось эл­липсов равна l,07d, а малая ось — 0,33d (d диаметр окружности). Для упрощения построения эллипсы заменяют овалами.

Аксонометрическое проецирование

Рис. 156

Линии штриховки сечений в аксонометрических проекциях наносят параллельно одной из диагона­лей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны кото­рых параллельны аксонометрическим осям (рис. 157, а). При нанесении размеров выносные линии проводят параллельно аксонометрическим осям, размерные линии — параллельно измеряе­мому отрезку (рис. 157, б).

Аксонометрическое проецирование

Рис. 157

В аксонометрических проекциях спицы махови­ков и шкивов, ребра жесткости и подобные эле­менты штрихуют (рис. 158. а).

При выполнении в аксонометрических проекци­ях зубчатых колес, реек, червяков, резьб и подо­бных элементов допускается применять условнос­ти по ГОСТ 2.402-68 и ГОСТ 2.311-68 (рис. 158, б и в).

Аксонометрическое проецирование

Рис. 158

Примеры и образцы решения задач:

  • Решение задач по инженерной графике
  • Решение задач по начертательной геометрии

Услуги по выполнению чертежей:

  1. Заказать чертежи
  2. Помощь с чертежами
  3. Заказать чертеж в компасе
  4. Заказать чертеж в автокаде
  5. Заказать чертежи по инженерной графике
  6. Заказать чертежи по начертательной геометрии
  7. Заказать черчение

Учебные лекции:

  1. Инженерная графика
  2. Начертательная геометрия
  3. Оформление чертежей
  4. Чертеж общего вида и сборочный чертеж
  5. Техническое рисование
  6. Машиностроительные чертежи
  7. Геометрические построения
  8. Деление окружности на равные части
  9. Сопряжение линий
  10. Коробовые кривые линии
  11. Построение уклона и конусности
  12. Лекальные кривые
  13. Параллельность и перпендикулярность
  14. Методы преобразования ортогональных проекций
  15. Поверхности
  16. Способы проецирования
  17. Метрические задачи
  18. Способы преобразования чертежа
  19. Кривые линии
  20. Кривые поверхности
  21. Трёхгранник Френе
  22. Проецирование многогранников
  23. Проецирование тел вращения
  24. Развёртывание поверхностей
  25. Проекционное черчение
  26. Проецирование
  27. Проецирование точки
  28. Проецирование отрезка прямой линии
  29. Проецирование плоских фигур
  30. Способы преобразования проекций
  31. Проекции геометрических тел
  32. Сечение геометрических тел плоскостями и развертки их поверхностей
  33. Взаимное пересечение поверхностей тел
  34. Сечение полых моделей
  35. Разрезы
  36. Требования к чертежам деталей
  37. Допуски и посадки
  38. Шероховатость поверхностей и обозначение покрытий
  39. Разъемные и неразъемные соединения деталей
  40. Передачи и их элементы
  1. Применение аксонометрии
  2. Стандартные виды аксонометрии в инженерии
  3. Изометрия в играх
  4. Изометрия в иллюстрации
  5. Как изобразить куб в изометрии
  6. Преимущества изометрического рисунка
  7. Изометрическая сетка

Применение аксонометрии

В инженерии. Для составления технических заданий на изготовление деталей необходимы чертежи с наглядными изображениями предмета, который нужно получить в итоге. Аксонометрическая схема — быстрый способ наглядно передать конечный результат с минимальными трудозатратами. Получая такой чертеж, специалист может легко представить себе готовое изделие в трехмерном виде и понять, как именно ему необходимо настроить оборудование. Аксонометрия применяется во всех сферах, в которых задействованы инженеры: архитектуре, машиностроении и т.д.

Пример использования аксонометрии в инженерии: инфографика производства рельсов. Источник

В дизайне. Из инженерной сферы аксонометрия плавно перетекла в сферу дизайна. В частности, с ее помощью можно создать проект интерьера помещения с трехмерной реализацией. Готовые объемные проекты выглядят гораздо нагляднее двухмерных планов по типу «вид сверху»: дизайнеру проще проводить презентацию, а его заказчику — воспринимать информацию. 

Пример изометрии в дизайн-проекте от Эсмиры Майлыевой. Источник

Стандартные виды аксонометрии в инженерии

Оси координат могут быть наклонены к аксонометрической плоскости под разными углами. Соответственно, один и тот же отрезок может проецироваться на плоскость в разных размерах. Данный критерий позволяет выделить несколько видов аксонометрии.

Изометрия. Является вариантом аксонометрической проекции, при котором все три оси координат имеют одинаковый наклон (120о). В данном случае изменение размеров проецируемого предмета одинаковое по всем трем осям. Для построения чертежей чаще всего применяется прямоугольная изометрия (проектирующие лучи перпендикулярны плоскости).

Диметрия. В этом случае две оси в системе координат имеют одинаковый наклон, а третья — другой (например, 135о, 135о и 90о). Соответственно, уменьшение размеров предмета будет одинаковым только по двум осям, а сам он будет выглядеть повернутым фронтальной стороной к наблюдателю.

Триметрия. В данном случае коэффициенты искажения изображения проецируемого предмета отличаются друг от друга сразу по трем осям (150о, 70о, 140о). Следовательно, аксонометрический вид предмета будет специфичным: наблюдатель по-прежнему увидит его с тех сторон, но некоторые детали могут быть менее детализированны за счет изменения угла обзора. 

Пример изометрии в дизайне от Anastasiya Korshak. Источник

Изометрия в играх

Современные компьютерные игры в большинстве случаев выпускаются с трехмерным миром, в котором каждый предмет имеет свой объем. Это позволяет максимально погрузить пользователя в сюжет и подарить ему ощущение реальности происходящего. Перечисленные выше виды проекций активно используются разработчиками, и для упрощения коммуникации между дизайнерами и кодировщиками все три понятия принято называть изометрией. 

Пример использования изометрии в игре от Lelly Arvan. Источник

На заре компьютерной эры мощности процессоров и видеокарт для создания трехмерных объектов было недостаточно для обработки большого объема информации. Именно поэтому разработчики использовали простые плоские спрайты, которые не изменяли своего размера при перемещении персонажа по игровому полю. Сегодня это шарм, но в 80-х это объяснялось необходимостью. В наши дни мощность ПК позволяет воспроизводить графику, которая максимально реалистична, но изометрия продолжает активно применяться для прорисовки фонов и персонажей. Популярная консольная RPG будет отрисована по той же схеме, что и ее мобильная лайт-версия. При этом у дизайнеров и разработчиков по-прежнему остается масса возможностей для создания визуальных эффектов и разработки захватывающего геймплея.

Персонажи компьютерной игры, отрисованные в изометрии, от Caroline Leaves. Источник

Изометрия в иллюстрации

Иллюстрации — это не только картинки в сборниках детских сказок. Современная иллюстрация применяется в мобильных приложениях, размещается на сайтах и активно используется в оформлении буклетов. И если стандартного «плоского» двумерного изображения недостаточно, можно обратиться к изометрии. Она поможет повысить узнаваемость, увеличить глубину восприятия, а также детализировать дизайн. 

Пример изометрии в иллюстрации для сайта от Elena Brilenkova. Источник

Как изобразить куб в изометрии

На простом примере рассмотрим особенности работы с аксонометрическими чертежами. Для построения понадобятся линейка, карандаш, бумага и транспортир. Проведите вертикальную линию (ось z) и разделите ее пополам (центральная точка — начало координат). Отметьте точки в середине и на обоих концах линии. Через нижнюю точку проведите горизонтальную линию, строго перпендикулярную вертикальной. Далее при помощи транспортира отложите угол в 30о от горизонтальной линии по обеим сторонам от вертикали, а затем проведите две наклонных линии вверх, опираясь на данную разметку. Повторите эти действия для средней точки на вертикальной линии. Шаги для верхней точки будут аналогичными, но угол в 30о нужно будет разметить не вверх, а вниз. В местах пересечения линий, проведенных из верхней и средней точки, будут находиться вершины нашего куба. Опустите из этих точек вертикальные линии до пересечения с наклонными линиями, проведенными из нижней точки на первоначальном этапе. 

Преимущества изометрического рисунка

Изометрический вид удобен для дизайнеров, архитекторов и инженеров: он позволяет быстро получить максимум представления о предмете. Но не только профессионалы могут по достоинству оценить такой способ передачи визуальной информации. Подобная демонстрация очень востребована при составлении систем навигаций в крупных зданиях: музеях, картинных галереях и т.д. Прямоугольную изометрию применяют и в инфографике: она хорошо иллюстрирует различные понятия и позволяет быстрее усвоить большой объем сложной информации. 

Пример простого для восприятия эскиза проекта детского сада от «Творческого объединения 612». Источник

Изометрическая сетка

Чтобы не заниматься построением чертежей изометрических проекций с нуля, можно использовать заранее заготовленную изометрическую сетку. Она представляет собой множество треугольников, из которых можно составить практически любое изображение. Для создания чертежей вручную можно распечатать найденный в интернете шаблон. Если же вам повезло работать в цифровом приложении, то откройте меню настроек и добавьте изометрическую сетку в вашу рабочую зону. 

Изометрическая сетка и пример работы в ней. Источник

Понравилась статья? Поделить с друзьями:
  • Как выписать счет в леруа мерлен
  • Как выложить свой товар в леруа мерлен
  • Как выключить леруа
  • Как выгружают в леруа мерлен
  • Как выглядит скидочная карта леруа мерлен