Тела мотонейронов аксоны которых иннервируют межреберные мышцы находятся в

  • Авторы
  • Файлы


Чеснокова Н.П

1

Брилль Г.Е.

1

Моррисон В.В.

1

Понукалина Е.В.

1

Полутова Н.В.

1


1 ФГБОУ ВО «Саратовский Государственный медицинский университет им. В.И. Разумовского Минздрава России»

3.1 Нервная регуляция дыхания

Дыхательный центр представляет собой совокупность нейронов продолговатого мозга, обладающих ритмической активностью и определяющих ритм дыхательных движений. Бульбарный дыхательный центр выполняет две основные функции:

1) регуляцию двигательной активности дыхательных мышц (двигательная функция);

2) гомеостатическую, связанную с изменением характера дыхания при сдвигах газового состава и кислотно-основного равновесия в крови и тканях.

Двигательная функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна (длительности вдоха, выдоха, величины дыхательного объема).

Нейроны дыхательного центра расположены в дорсомедиальной и вентролатеральной областях продолговатого мозга, образуя так называемую дорсальную и вентральную дыхательные группы. В указанных дыхательных группах расположены следующие виды нейронов:

1) ранние инспираторные, максимальная частота разряда которых приходится на начало инспирации;

2) поздние инспираторные нейроны, максимальная частота разряда – в конце инспирации;

3) полные инспираторные нейроны, характеризующиеся постоянной активностью в течение фазы вдоха;

4) постинспираторные нейроны, максимальный разряд которых обнаруживается в течение выдоха;

5)экспираторные нейроны, активность которых возрастает во второй части выдоха;

6) преинспираторные нейроны, максимальный пик активности проявляют перед началом вдоха.

В структурах бульбарного дыхательного центра различают так называемые респираторно-связанные нейроны, активность которых совпадает с ритмом дыхания, но они не иннервируют дыхательные мышцы, а обеспечивают иннервацию верхних дыхательных путей.

В соответствии с локализацией нейронов бульбарного дыхательного центра, различают дорсальную дыхательную группу (ДДГ) и вентральную дыхательную группу (ВДГ). Нейроны дорсальной дыхательной группы получают афферентные сигналы от легочных рецепторов растяжения по волокнам n. Vagus. Только часть инспираторных нейронов дорсальной группы дыхательного центра связана аксонами с дыхательными мотонейронами спинного мозга, преимущественно с контрлатеральной стороной.

Вентральная дыхательная группа расположена латеральнее обоюдного ядра продолговатого мозга, подразделяется на ростральную и каудальную части. Причем, ростральная часть вентральной дыхательной группы представлена ранними, поздними, полными инспираторными и постинспираторными нейронами.

Дорсальная и вентральная группы нейронов в правой и левой половинах продолговотого мозга взаимосвязаны как в пределах одной половины, так и с нейронами противоположной стороны. В синхронизации деятельности контрлатеральных нейронов бульбарного дыхательного центра участвуют проприобульбарные нейроны и экспираторные нейроны комплекса Бетцингера.

Касаясь функциональных особенностей отдельных нейронов бульбарного дыхательного центра, следует отметить, что ранние инспираторные нейроны (активируются в момент вдоха) называют еще проприобульбарными, так как не направляют свои аксоны за пределы дыхательного центра продолговатого мозга и контактируют только с другими типами дыхательных нейронов. Часть полных и поздних инспираторных нейронов направляет свои аксоны к дыхательным мотонейронам спинного мозга. Все экспираторные нейроны каудальной части вентральной дыхательной группы направляют аксоны в спинной мозг. При этом 40% экспираторных нейронов иннервируют внутренние межреберные мышцы, а 60% — мышцы брюшной стенки.

Таким образом, нейроны бульбарного дыхательного центра в зависимости от их значимости в регуляции внешнего дыхания разделяют на три группы:

1) нейроны, иннервирующие мышцы верхних дыхательных путей и регулирующие поток воздуха в дыхательных путях;

2) нейроны, синаптически связанные с мотонейронами спинного мозга и регулирующие активность мышц вдоха и выдоха;

3) проприобульбарные нейроны, участвующие в генерации дыхательного ритма, аксоны которых обеспечивают связь только с нейронами продолговатого мозга.

Подобно многим физиологическим системам контроля, система управления дыханием организована как контур отрицательной обратной связи.

Афферентация с различных рецепторных зон интегрируется в бульбарном дыхательном центре. Последний, в свою очередь, генерирует импульсацию к мотонейронам спинального отдела дыхательного центра, регулирующего сократительную активность дыхательной мускулатуры.

Важная роль в регуляции внешнего дыхания отводится центрам варолиева моста, в частности, пневмотаксическому центру. Последний включает медиальное, парабрахиальное ядро и ядро Келликера. В парабрахиальном ядре находятся преимущественно инспираторные, экспираторные и фазопереходные нейроны. Ядро Келликера содержит инспираторные нейроны.

Дыхательные нейроны моста участвуют в механизмах смены фаз дыхания, регулируют величину дыхательного объема.

Непосредственными регуляторами сократительной способности дыхательных мышц являются спинальные мотонейроны, получающие информацию по нисходящим ретикулоспинальным путям от бульбарного дыхательного центра.

Как известно, нейроны диафрагмального нерва расположены узким столбом в медиальной части вентральных рогов от СIII до CV. Подавляющее количество волокон диафрагмального нерва являются аксонами α-мотонейронов, а меньшая часть представлена афферентными волокнами мышечных и сухожильных веретен диафрагмы, а также рецепторов плевры, брюшины и свободных нервных окончаний самой диафрагмы.

Мотонейроны, иннервирующие межреберные мышцы, расположены в передних рогах спинного мозга на уровне TIV-TX, из них часть нейронов регулирует сокращения межреберных мышц, а другая часть – их позно-тоническую активность.

Обращает на себя внимание тот факт, что активность спинальных мотонейронов, обеспечивающих регуляцию двигательной активности межреберных мышц и диафрагмы, в свою очередь, находится под контролем инспираторных нейронов спинного мозга, расположенных на уровне СI-CII вблизи латерального края промежуточной зоны серого вещества.

В обеспечении дыхания, особенно в условиях патологии, участвуют мышцы брюшной стенки, получающие иннервацию от мотонейронов спинного мозга на уровне TIV-LIII.

Двум фазам внешнего дыхания (вдоху и выдоху) соответствуют три фазы активности бульбарного дыхательного центра: инспирация, пассивная контролируемая экспирация и активная экспирация. Во время фазы инспирации диафрагма и наружные межреберные мышцы увеличивают силу сокращения, активируются мышцы гортани, расширяется голосовая щель, снижается сопротивление потоку воздуха. В постинспираторную фазу дыхания происходит медленное расслабление диафрагмы, сокращение мышц гортани, выход воздуха в окружающую среду.

В фазе экспирации – экспираторный поток усиливается за счет сокращения внутренних межреберных мышц и мышц брюшной стенки.

Рефлекторная регуляция дыхания обеспечивается за счет афферентной импульсации в бульбарный дыхательный центр с различных рецепторных зон. Мощной рефлексогенной зоной является слизистая оболочка полости носа, где расположены различные типы механорецепторов, в том числе ирритантные, растяжения, а также болевой чувствительности, обоняния.

Возбуждение этих рецепторов возникает в момент каждого вдоха и приводит к формированию потока афферентной импульсации в ретикулярную формацию ствола мозга с последущей активацией бульбарного дыхательного центра, сосудодвигательного центра, гипоталамических и корковых структур мозга.

Раздражение ирритантных рецепторов слизистой оболочки носа приводит к рефлекторному сужению бронхов, голосовой щели, остановке дыхания на выдохе, развитию брадикардии, а в ряде случаев прекращению сердечных сокращений и другим изменениям (тормозной тригемино-вагусный рефлекс Кречмера ).

Слизистая трахеи и бронхов является слабой рефлексогенной зоной. В стенке крупных внелегочных бронхов и трахеи имеются высокопороговые, низкочувствительные медленноадаптирующиеся, быстроадаптирующиеся и промежуточные механорецепторы, в норме их роль в регуляции дыхания минимальна.

Чувствительность этих рецепторов возрастает при развитии воспалительного процесса в бронхолегочной системе инфекционной или аллергической природы, когда освобождаются медиаторы воспаления и аллергии: гистамин, кинины, лейкотриены, простагландины и др.. Возбудимость рецепторов трахеи и бронхов возрастает и в случае застойных явлений в малом кругу кровообращения, когда прежние объемы воздуха сильно растягивают стенки воздухоносных путей. Афферентация с рецепторов трахеи и бронхов направляется в бульбарный дыхательный центр по чувствительным волокнам n. Vagus, модулируя глубину и частоту дыхательных движений.

Мощной рефлексогенной зоной является паренхима легких, обеспечивающая не только альвеолярное дыхание, но и рефлекторную регуляцию внешнего дыхания.

Основные типы легочных вагусных афферентов включают: медленноадаптирующиеся рецепторы растяжения альвеол, быстроадаптирующиеся рецепторы, С-волокна.

Многочисленные быстроадаптирующиеся рецепторы (БАР) находятся в эпителии внутрилегочных бронхов и бронхиол. Эти рецепторы наиболее чувствительны к следующим типам раздражителей: ирритантным воздействиям, повреждению паренхимы и механическому раздражению дыхательных путей. Возбуждение БАР возникает также при глубоком дыхании, легочной эмболии и капиллярной гипертензии. Афферентация с этих рецепторов распространяется по чувствительным маломиелинизированным волокнам n. Vagus в ретикулярную формацию ствола мозга и бульбарный дыхательный центр, вызывая бронхоконстрикцию, тахипноэ, развитие кашля и тахикардии. Возбуждение этих рецепторов может быть клинически значимым в патогенезе бронхиальной астмы и нарушениях реактивности дыхательных путей.

По данным ряда авторов в паренхиме легких выделяют и БАР рецепторы спадения, реагирующие на спадение альвеол под воздействием внутрилегочных и внелегочных факторов. Афферентация с этих рецепторов поступает в бульбарный дыхательный центр по маломиелинизированным волокнам n. Vagus и обеспечивает развитие тахипноэ.

Медленноадаптирующиеся рецепторы растяжения – важная группа механорецепторов c вагусной афферентацией, расположенных в гладких мышцах воздухоносных путей. Частота импульсов с этих рецепторов возрастает по мере растяжения альвеол вдыхаемым воздухом и распространяется по толстым миелинизированным α-волокнам n. Vagus в бульбарный дыхательный отдел, обеспечивая формирование рефлекса Геринга-Брейера. Последний контролирует частоту и глубину дыхания, имеет физиологическое значение при дыхательных объемах превышающих 1 л (у взрослых при физической нагрузке). Рефлекс Геринга-Брейера более важен для регуляции дыхательного акта у новорожденных, а также в условиях патологии как один из механизмов реализации инспираторной, экспираторной и смешанной одышек.

Третьей группой легочных механорецепторов являются С-волокна – тонкие миелинизированные вагусные афференты. С – волокна оканчиваются в паренхиме легких, в бронхах и кровеносных сосудах, активируются экзогенными раздражителями и медиаторами альтерации. Активация С-волокон приводит к тахипноэ, брадикардии, гиперсекреции слизи. В состав С-волокон входят J-рецепторы, расположенные в альвеолярных перегородках в контакте с капиллярами (юкстакапиллярные рецепторы), чувствительные к интерстициальному отеку, легочной венозной гипертензии, микроэмболии, раздражающим газам и ингаляционным наркотическим веществам. Активация J-рецепторов вызывает закрытие гортани и апноэ, за которыми следует частое поверхностное дыхание, гипотензия и брадикардия.

Важная роль в рефлекторной регуляции дыхания отводится проприорецепторам суставов грудной клетки, межреберных мышц, диафрагмы, сухожильным рецепторам. Недостаточное укорочение инспираторных или экспираторных мышц усиливает импульсацию от мышечных веретен, которая через α-мотонейроны повышает активность α-мотонейронов и дозирует таким образом мышечное усилие.

В регуляции активности бульбарного дыхательного центра и внешнего дыхания принимает участие и афферентация с висцеральных рецепторов и рецепторов кожи, о чем свидетельствует развитие гипервентиляции легких при болевом и термическом раздражении.

3.2. Механизмы гуморальной регуляции дыхания

Важная роль в регуляции дыхания отводится хеморецепторам.

Изменения газового состава крови (РаО2, РаСО2) влияют на активность дыхательного центра путем возбуждения хеморецепторов каротидных и аортальных телец (периферические рецепторы), а также хеморецепторов вентральной зоны продолговатого мозга и дорсального дыхательного ядра (центральные рецепторы). Периферические хеморецепторы (рис.5) обеспечивают регуляцию частоты дыхательных движений. Адекватным раздражителем для них является уменьшение РО2 артериальной крови, в меньшей степени – увеличение РСО2 и снижение рН. Периферические хеморецепторы расположены у бифуркации общих сонных артерий на внутреннюю и наружнюю. Несмотря на свой миниатюрный размер, каротидные тельца интенсивно кровоснабжаются (1,4-2 л/мин на 100 г ткани). Этот орган особенно чувствителен к колебаниям кислорода в артериальной крови. При Ра О2 в пределах 60-80 мм рт. ст. наблюдается слабое усиление вентиляции, при Ра О2 ниже 50 мм рт. ст. возникает выраженная гипервентиляция легких. Ра СО2 и рН крови потенцируют эффекты гипоксемии на артериальные хеморецепторы и не являются адекватными раздражителями для этих рецепторов. После двустороннего удаления каротидных телец гипоксический вентиляторный ответ у человека исчезает. При отсутствии хеморецепторной стимуляции, например, при глубокой гипокапнии, повреждении синокаротидной зоны (опухоли, коллагенозы, травмы) ритмогенез дыхания снижается и полностью прекращается.

lekc_5.tif

Рис. 5. Каротидное тельце: 1-хеморецепторные клетки; 2-поддерживающие клетки; 3-синаптические пузырьки; 4-чувствительные нервные окончания; 5-нервное волокно

Центральные хемочувствительные клетки реагируют на отклонения РСО2 и [H+] во внеклеточной жидкости внутримозгового интерстициального пространства, регулируют глубину вдоха. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз тормозят центральные хеморецепторы.

Одной из причин высокой скорости вентиляторного ответа на гиперкапнию является легкость диффузии СО2 через барьерную систему кровь-головной мозг. Более того, повышенное РСО2 вызывает расширение сосудов, особенно церебральных, способствуя тем самым усилению диффузии СО2 через гемато-энцефалический барьер.


Библиографическая ссылка

Чеснокова Н.П, Брилль Г.Е., Моррисон В.В., Понукалина Е.В., Полутова Н.В. ЛЕКЦИЯ 3 ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ НЕРВНОЙ И ГУМОРАЛЬНОЙ РЕГУЛЯЦИИ ДЫХАНИЯ // Научное обозрение. Медицинские науки. – 2017. – № 2.
– С. 36-39;

URL: https://science-medicine.ru/ru/article/view?id=972 (дата обращения: 06.04.2023).


Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

1)
в боковых рогах шейных сегментов спинного
мозга 2) в коре больших полушарий 3) в
передних рогах 3-4 шейных сегментов
спинного мозга 4) в передних рогах
грудного отдела спинного мозга 5) в
продолговатом мозге на дне 4-го желудочка

047.
Укажите, какая концентрация эритроцитов
в крови у новорожденного может быть
признана нормальной:

1)
6,3 Т/л 2) 3,4 Т/л 3) 2,5 Т/л 4) 0,45 Т/л 5) 4,5 Т/л

048.
СОЭ может быть увеличена при:

1)
воспалении 2) эритроцитозе 3) тромбоцитозе
4) снижении фибриногена в плазме крови
5) лейкопении

049.
Какие из перечисленных функций не
выполняют лейкоциты:

1)
аллергические и аутоиммунные реакции
2) клеточные и гуморальные иммунные
реакции 3) реакция отторжения трансплантата

4)
противоопухолевая защита 5) регуляция
рН, осмотического давления

050.
Какова лейкоцитарная формула в норме:

1)
Б: 0-3%, Э: 1-5%, Ю: 0-1%, п/я: 1-5%, с/я: 40-70%, Л: 20-40%,
М: 2-8%

2)
Б: 0-1%, Э: 1-4%, Ю: 0-5%, п/я: 5-10%, с/я: 30-40%, Л:
10-40%, М: 2-10%

3)
Б: 0-1%, Э: 1-4%, Ю: 2-4%, п/я: 1-5%, с/я: 40-70%, Л: 10-20%,
М: 1-5%

4)
Б: 1-2%, Э: 5-8%, Ю: 0-1%, п/я: 1-5%, с/я: 40-70%, Л: 20-30%,
М: 2-8%

5)
Б: 0-1%, Э: 1-4%, Ю: 0-1%, п/я: 1-5%, с/я: 40-70%, Л: 20-40%,
М: 2-8%

3
ВАРИАНТ

001.
При гипопротеинемии будут наблюдаться:
1) тканевые
отеки 2) клеточный отек 3) и то, и другое
4) ни то, ни другое 5) все ответы неверны

002.
Эффективное
фильтрационное давление — это:
1)
разность между онкотическим давлением
крови в капиллярах клубочка и суммой
гидростатического давления крови в
капиллярах клубочка и гидростатического
давления ультрафильтрата в капсуле 2)
разность между гидростатическим
давлением ультрафильтрата в капсуле и
суммой онкотического и гидростатического
давления в капиллярах клубочка 3) разность
между суммой онкотического и
гидростатического давления ультрафильтрата
в капсуле и гидростатическим давлением
крови в капиллярах клубочка 4) разность
между гидростатическим давлением крови
в капиллярах клубочка и суммой
онкотического давления крови в капиллярах
клубочка и гидростатического давления
ультрафильтрата в капсуле 5) все
перечисленное неверно

003. Может ли наблюдаться трансфузионный шок, связанный с резус – несовместимостью, при переливании эритроцитарной массы от резус-отрицательного донора резус-положительному реципиенту?

1)
нет 2) да, при переливании больших
количеств эритроцитарной массы 3) да,
если реципиент – женщина с несколькими
беременностями в анамнезе 4) да, если
донор – женщина с несколькими
беременностями в анамнезе 5) да, в любом
случае

004.
У больного периодически возникают
неконтролируемые судорожные движения
левой руки. Где расположен патологический
очаг?
1) в
левом полушарии мозжечка 2) в правом
полушарии мозжечка 3) в черве мозжечка
4) в нижнем отделе прецентральной извилины
справа 5) в верхнем отделе постцентральной
извилины справа

005. Что произойдет с потенциалом покоя возбудимой клетки при повышении концентрации калия во внеклеточной среде?

1)
деполяризация 2) гиперполяризация 3)
ничего 4) реполяризация 5) исчезнет

006.
Человек потреблял в сутки 100 г. белка.
При этом у него наблюдалось азотистое
равновесие. Затем он перешел на рацион
с суточным содержанием белка 200 г. Что
вы обнаружите, если на 3-й неделе такой
диеты определите у него азотистый
баланс?

1)
выделение азота возросло в 2 раза;
азотистое равновесие 2) выделение азота
увеличилось, но все же не соответственно
приходу; положительный азотистый баланс
3) выделение азота не изменилось;
положительный азотистый баланс 4)
выделение азота снизилось, положительный
азотистый баланс 5) выделение азота
возросло в 5 раз, отрицательный азотистый
баланс

Соседние файлы в предмете Нормальная физиология

  • #
  • #
  • #
  • #
Двигательный нейрон
Продолговатый мозг - задний - cn xii - очень высокий mag.jpg

Микрофотография из подъязычное ядро показывая мотонейроны с их характерными грубыми Субстанция Ниссля («тигроидная» цитоплазма). Окраска H & E-LFB.

подробности
Расположение Вентральный рог из спинной мозг, немного ядра черепных нервов
Форма Проекционный нейрон
Функция Возбуждающая проекция (на СМП )
Нейротрансмиттер UMN к LMN: глутамат; LMN к СМП: АЧ
Пресинаптические связи Первичная моторная кора через Кортикоспинальный тракт
Постсинаптические связи Мышечные волокна и другие нейроны
Идентификаторы
MeSH D009046
НейроЛекс МНЕ БЫ nifext_103
TA98 A14.2.00.021
TA2 6131
FMA 83617
Анатомические термины нейроанатомии

[редактировать в Викиданных ]

А двигательный нейрон (или мотонейрон) это нейрон чья Тело клетки расположен в моторная кора, мозговой ствол или спинной мозг, и чья аксон (волокна) проецируются в спинной мозг или за пределы спинного мозга, чтобы прямо или косвенно управлять эффекторными органами, в основном мышцы и железы.[1] Есть два типа моторных нейронов — верхние двигательные нейроны и нижние двигательные нейроны. Аксоны из синапса верхних мотонейронов на интернейроны в спинном мозге и иногда прямо на нижние мотонейроны.[2] Аксоны нижних мотонейронов эфферентные нервные волокна которые передают сигналы от спинной мозг к эффекторам.[3] Типы нижних мотонейронов: альфа двигательные нейроны, бета мотонейроны, и гамма мотонейроны.

Один двигательный нейрон может иннервировать множество мышечные волокна и мышечное волокно может подвергнуться многим потенциалы действия за время, затраченное на сингл подергивание мышц. Иннервация происходит в нервно-мышечное соединение и подергивания могут накладываться друг на друга в результате суммирование или тетаническое сокращение. Отдельные подергивания могут стать неразличимыми, а напряжение плавно нарастает, в конечном итоге достигая плато.[4]

Развитие

Моторные нейроны начинают развиваться рано эмбриональное развитие, и двигательная функция продолжает развиваться в детстве.[5] в нервная трубка клетки специфицируются либо к рострально-каудальной оси, либо к вентрально-дорсальной оси. В аксоны мотонейронов начинают появляться на четвертой неделе развития из вентральной области вентрально-дорсальной оси ( базальная пластинка ).[6] Этот гомеодомен известен как домен предшественника моторных нейронов (pMN). Факторы транскрипции сюда включают Pax6, OLIG2, Nkx-6.1, и НКХ-6.2, которые регулируются звуковой еж (Тсс). Ген OLIG2 является наиболее важным из-за его роли в продвижении Выражение Ngn2, ген, который вызывает выход из клеточного цикла, а также способствует дальнейшим факторам транскрипции, связанным с развитием моторных нейронов.[7]

Дальнейшая спецификация мотонейронов происходит, когда ретиноевая кислота, фактор роста фибробластов, Wnts, и TGFb, интегрированы в различные Hox факторы транскрипции. Существует 13 факторов транскрипции Hox, которые вместе с сигналами определяют, будет ли мотонейрон более ростральным или каудальным по характеру. В позвоночнике Hox 4-11 сортируют мотонейроны в один из пяти моторных столбцов.[7]

Моторные столбы спинного мозга [8]

Моторная колонка Расположение в спинном мозге Цель
Средняя колонка двигателя Присутствует вся длина Осевые мышцы
Гипаксиальная моторная колонка Грудной отдел Мышцы стенки тела
Преганглионарная моторная колонка Грудной отдел Симпатический ганглий
Боковая моторная колонка Плечевая и поясничная области (обе области далее делятся на медиальную и латеральную области) Мышцы конечностей
Диафрагмальная моторная колонка Шейный отдел Диафрагма[9]

Анатомия и психология

Тракты спинного мозга

Расположение нижних мотонейронов в спинном мозге

Верхние двигательные нейроны

Верхние мотонейроны происходят из моторная кора расположен в прецентральная извилина. Клетки, составляющие первичная моторная кора находятся Клетки Беца, которые являются разновидностью пирамидная ячейка. Аксоны этих клеток спускаются из коры, чтобы сформировать кортикоспинальный тракт.[10] Кортикомоторнейроны проецируются из первичной коры непосредственно на двигательные нейроны вентрального рога спинного мозга.[11][12] Их аксоны синапсы на спинных мотонейронах нескольких мышц, а также на спинномозговой интернейроны.[11][12] Они уникальны для приматов, и было высказано предположение, что их функция — адаптивное управление Руки включая относительно независимое управление отдельными пальцами.[12][13] Кортикомоторнейроны до сих пор были обнаружены только в первичной моторной коре, но не во вторичных моторных областях.[12]

Нервные тракты

Нервные тракты пучки аксонов как белое вещество, которые несут потенциалы действия к их эффекторам. В спинном мозге эти нисходящие пути переносят импульсы из разных регионов. Эти тракты также служат местом происхождения нижних мотонейронов. В спинном мозге можно обнаружить семь основных нисходящих моторных трактов:[14]

  • Боковой кортикоспинальный тракт
  • Руброспинальный тракт
  • Боковой ретикулоспинальный тракт
  • Вестибулоспинальный тракт
  • Медиальный ретикулоспинальный тракт
  • Тектоспинальный тракт
  • Передний кортикоспинальный тракт

Нижние двигательные нейроны

Нижние мотонейроны — это те, которые берут начало в спинном мозге и прямо или косвенно иннервируют эффекторные мишени. Мишени этих нейронов различны, но в соматической нервной системе целью будет какое-то мышечное волокно. Существует три основных категории низших мотонейронов, которые можно разделить на подкатегории.[15]

В соответствии с их целями моторные нейроны делятся на три широкие категории:[16]

  • Соматические двигательные нейроны
  • Специальные висцеральные двигательные нейроны
  • Общие висцеральные двигательные нейроны

Соматические двигательные нейроны

Соматические мотонейроны происходят из Центральная нервная система, проецировать их аксоны к скелетные мышцы [17] (например, мышцы конечностей, брюшного пресса и межреберные мышцы ), которые участвуют в движение. Три типа этих нейронов — это альфа эфферентные нейроны, бета эфферентные нейроны, и гамма эфферентные нейроны. Они называются эфферент для обозначения потока информации от Центральная нервная система (CNS) в периферия.

  • Альфа двигательные нейроны иннервировать экстрафузальные мышечные волокна, которые являются основным компонентом мышцы, генерирующим силу. Их клеточные тела находятся в брюшной рог спинного мозга, и их иногда называют клетки вентрального рога. Один мотонейрон может синапсировать в среднем со 150 мышечными волокнами.[18] Моторный нейрон и все мышечные волокна, с которыми он соединяется, представляют собой моторный блок. Моторные агрегаты делятся на 3 категории:[19] Основная статья: Моторный блок
    • Медленные (S) двигательные единицы стимулируют мелкие мышечные волокна, которые сокращаются очень медленно и дают небольшое количество энергии, но очень устойчивы к утомлению, поэтому они используются для поддержания мышечного сокращения, например, для поддержания тела в вертикальном положении. Они получают энергию с помощью окислительных средств и, следовательно, нуждаются в кислороде. Их еще называют красными волокнами.[19]
    • Двигательные единицы с быстрым утомлением (FF) стимулируют большие группы мышц, которые прикладывают большое количество силы, но очень быстро утомляются. Они используются для задач, требующих больших коротких всплесков энергии, таких как прыжки или бег. Они получают энергию с помощью гликолитических средств и, следовательно, не нуждаются в кислороде. Их называют белыми волокнами.[19]
    • Быстрые устойчивые к утомлению двигательные единицы стимулируют группы мышц среднего размера, которые не реагируют так быстро, как двигательные единицы FF, но могут удерживаться намного дольше (как следует из названия) и обеспечивают большую силу, чем двигательные единицы S. Они используют как окислительные, так и гликолитические средства для получения энергии.[19]

Помимо произвольного сокращения скелетных мышц, альфа-мотонейроны также способствуют мышечный тонус, непрерывная сила, создаваемая несокращающейся мышцей, препятствующая растяжению. Когда мышца растягивается, сенсорные нейроны в пределах мышечное веретено определить степень растяжения и отправить сигнал в ЦНС. ЦНС активирует альфа-двигательные нейроны в спинном мозге, которые заставляют экстрафузионные мышечные волокна сокращаться и тем самым сопротивляться дальнейшему растяжению. Этот процесс также называют рефлекс растяжения.

  • Бета мотонейроны иннервировать интрафузальные мышечные волокна из мышечные веретена, с коллатералями к экстрафузальным волокнам. Есть два типа бета-мотонейронов: Медленно сокращающиеся — они иннервируют экстрафузальные волокна. Быстрое сокращение — они иннервируют интрафузальные волокна.[20]
  • Гамма двигательные нейроны иннервируют интрафузальные мышечные волокна в мышечном веретене. Они регулируют чувствительность веретена к растяжению мышц. При активации гамма-нейронов интрафузальные мышечные волокна сокращаются, так что требуется лишь небольшое растяжение для активации сенсорных нейронов веретена и рефлекса растяжения. Существует два типа гамма-мотонейронов: динамические — они фокусируются на волокнах Bag1 и повышают динамическую чувствительность. Статические — они фокусируются на волокнах Bag2 и повышают чувствительность к растяжению.[20]
  • Регулирующие факторы нижних мотонейронов
    • Принцип размера — это относится к соме мотонейрона. Это ограничивает более крупные нейроны для получения большего возбуждающего сигнала для стимуляции мышечных волокон, которые они иннервируют. Уменьшая ненужное задействование мышечных волокон, организм может оптимизировать потребление энергии.[20]
    • Постоянный входящий ток (PIC) — недавние исследования на животных показали, что постоянный поток ионов, таких как кальций и натрий, через каналы в соме и дендритах влияет на синаптический вход. Другой способ думать об этом заключается в том, что постсинаптический нейрон активируется перед получением импульса.[20]
    • После Гиперполяризация (AHP) — Обнаружена тенденция, согласно которой медленные двигательные нейроны имеют более интенсивные AHP в течение более длительного времени. Один из способов запомнить это — то, что медленные мышечные волокна могут сокращаться дольше, поэтому имеет смысл, что соответствующие им двигательные нейроны активизируются с меньшей скоростью.[20]

Специальные висцеральные двигательные нейроны

Они также известны как жаберные двигательные нейроны, которые участвуют в мимике, жевании, фонации и глотании. Связанные черепные нервы — это глазодвигательный, похищает, трохлеарный, и подъязычный нервы.[16]

Филиал НС Должность Нейротрансмиттер
Соматический н / д Ацетилхолин
Парасимпатический Преганглионарный Ацетилхолин
Парасимпатический Ганглионарный Ацетилхолин
Симпатичный Преганглионарный Ацетилхолин
Симпатичный Ганглионарный Норэпинефрин *
* За исключением волокон до потовые железы и некоторые кровеносный сосуд
Нейромедиаторы моторных нейронов

Общие висцеральные двигательные нейроны

Эти двигательные нейроны косвенно иннервируют сердечная мышца и гладкие мышцы из внутренности (мышцы артерии ): Oни синапс на нейроны, расположенные в ганглии из автономная нервная система (симпатичный и парасимпатический ), расположенный в периферическая нервная система (ПНС), которые непосредственно иннервируют висцеральные мышцы (а также некоторые клетки железы).

Как следствие, моторная команда скелетный и жаберные мышцы моносинаптический с участием только одного мотонейрона, либо соматический или жаберный, который прикрепляется к мышце. Для сравнения, командование висцеральные мышцы является дисинаптический с участием двух нейронов: общий висцеральный мотонейрон, расположенный в ЦНС, синапсирует с ганглиозным нейроном, расположенным в ПНС, который синапсирует с мышцей.

Все двигательные нейроны позвоночных холинергический, то есть они выпускают нейротрансмиттер ацетилхолин. Парасимпатические ганглиозные нейроны также являются холинэргическими, тогда как большинство симпатических ганглиозных нейронов являются холинергическими. норадренергический, то есть они высвобождают нейромедиатор норадреналин. (см. таблицу)

Нервно-мышечные соединения

Один двигательный нейрон может иннервировать множество мышечные волокна и мышечное волокно может подвергнуться многим потенциалы действия за время, затраченное на сингл подергивание мышц. В результате, если потенциал действия возникает до того, как подергивание завершилось, подергивания могут накладываться друг на друга либо через суммирование или тетаническое сокращение. В итоге, мышца стимулируется повторно, так что дополнительные потенциалы действия, исходящие от соматическая нервная система прибыть до окончания подергивания. Таким образом, подергивания накладываются друг на друга, что приводит к большей силе, чем при одиночном подергивании. Тетаническое сокращение вызывается постоянной, очень высокочастотной стимуляцией — потенциалы действия возникают с такой высокой скоростью, что отдельные подергивания неразличимы, а напряжение плавно нарастает, в конечном итоге достигая плато.[4]

Интерфейс между двигательным нейроном и мышечным волокном — это специализированный синапс называется нервно-мышечное соединение. При адекватной стимуляции мотонейрон выпускает поток ацетилхолина (Ach). нейротрансмиттеры от окончаний аксона из синаптических пузырьков связываются с плазматической мембраной. Молекулы ацетилхолина связываются с постсинаптический рецепторы находится в концевой пластине двигателя. После связывания двух рецепторов ацетилхолина открывается ионный канал, и ионы натрия могут проникать в клетку. Приток натрия в клетку вызывает деполяризацию и запускает мышечный потенциал действия. Затем стимулируются Т-канальцы сарколеммы, чтобы вызвать высвобождение ионов кальция из саркоплазматического ретикулума. Именно это химическое высвобождение заставляет целевое мышечное волокно сокращаться.[18]

В беспозвоночные В зависимости от высвобождаемого нейротрансмиттера и типа рецептора, который он связывает, реакция мышечного волокна может быть либо возбуждающей, либо тормозящей. Для позвоночные Однако ответ мышечного волокна на нейротрансмиттер может быть только возбуждающим, другими словами, сократительным. Расслабление мышц и подавление мышечных сокращений у позвоночных достигается только путем подавления самого двигательного нейрона. Вот как миорелаксанты работают, воздействуя на двигательные нейроны, которые иннервируют мышцы (уменьшая их электрофизиологический активность) или на холинергический нервно-мышечные соединения, а не сами мышцы.

Смотрите также

  • Ячейка Беца
  • Центральный хроматолиз
  • Двигательная дисфункция
  • Заболевание двигательных нейронов
  • Нерв

использованная литература

  1. ^ Тортора, Жерар; Дерриксон, Брайан (2014). Принципы анатомии и физиологии (14-е изд.). Нью-Джерси: John Wiley & Sons, Inc., стр.406, 502, 541. ISBN  978-1-118-34500-9.
  2. ^ Покок, Джиллиан; Ричардс, Кристофер Д. (2006). Физиология человека: основы медицины (3-е изд.). Оксфорд: Издательство Оксфордского университета. С. 151–153. ISBN  978-0-19-856878-0.
  3. ^ Шактер Д.Л., Гилберт Д.Т., Вегнер Д.М. (2011) Психология второе издание. Нью-Йорк, Нью-Йорк: стоит
  4. ^ а б Рассел, Питер (2013). Биология — изучение разнообразия жизни. Торонто: образование Нельсона. п. 946. ISBN  978-0-17-665133-6.
  5. ^ Тортора, Жерар; Дерриксон, Брайан (2011). Принципы анатомической физиологии (14-е изд.). Нью-Джерси: John Wiley & Sons, Inc., стр.1090–1099. ISBN  978-1-118-34500-9.
  6. ^ Сэдлер, Т. (2010). Медицинская эмбриология Лангмана (11-е изд.). Филадельфия: Липпинкотт Уильям и Уилкинс. С. 299–301. ISBN  978-0-7817-9069-7.
  7. ^ а б Дэвис-Дузенбери, Б.Н.; Уильямс, Луизиана; Клим, младший; Эгган, К. (февраль 2014 г.). «Как сделать спинномозговые мотонейроны». Развитие. 141 (3): 491–501. Дои:10.1242 / дев.097410. PMID  24449832.
  8. ^ Эдгар Р., Мазор Й, Ринон А., Блюменталь Дж., Голан Й, Бужор Э, Ливнат I, Бен-Ари С, Лидер I, Шитрит А, Гильбоа Й, Бен-Иегуда А, Эдри О, Шрага Н., Богоч Й, Лешанский Л., Ахарони С., Западный доктор медицины, Варшавский Д., Штрихман Р. (2013). «LifeMap Discovery ™: портал исследований эмбрионального развития, стволовых клеток и регенеративной медицины». PLoS ONE. 8 (7): e66629. Bibcode:2013PLoSO … 866629E. Дои:10.1371 / journal.pone.0066629. ISSN  1932-6203. ЧВК  3714290. PMID  23874394.
  9. ^ Филиппиду, Поликсени; Уолш, Кэролайн; Обен, Жозе; Жаннотта, Люси; Дасен, Джереми С. (2012). «Устойчивая активность гена Hox5 необходима для развития дыхательных моторных нейронов». Природа Неврология. 15 (12): 1636–1644. Дои:10.1038 / нн.3242. ISSN  1097-6256. ЧВК  3676175. PMID  23103965.
  10. ^ Фитцпатрик, Д. (2001) Первичная моторная кора: верхние моторные нейроны, которые инициируют сложные произвольные движения. В D. Purves, G.J. Августин, Д. Фитцпатрик и др. (Ред.), Неврология. Полученное из «Архивная копия». В архиве из оригинала 2018-06-05. Получено 2017-11-30.CS1 maint: заархивированная копия как заголовок (ссылка на сайт)
  11. ^ а б Мак, Сара; Кандел, Эрик Р .; Джесселл, Томас М .; Шварц, Джеймс Х .; Siegelbaum, Steven A .; Хадспет, А. Дж. (2013). Принципы нейронауки. Кандел, Эрик Р. (5-е изд.). Нью-Йорк. ISBN  9780071390118. OCLC  795553723.
  12. ^ а б c d Лимон, Роджер Н. (4 апреля 2008 г.). «Нисходящие пути в управлении моторикой». Ежегодный обзор нейробиологии. 31 (1): 195–218. Дои:10.1146 / annurev.neuro.31.060407.125547. ISSN  0147-006X. PMID  18558853.
  13. ^ Иса, Т. (апрель 2007 г.). «Прямые и непрямые кортико-мотонейрональные пути и контроль движений кисти / руки». Физиология. 22 (2): 145–152. Дои:10.1152 / Physiol.00045.2006. PMID  17420305.
  14. ^ Тортора, Дж. Дж., Дерриксон, Б. (2011). Спинной мозг и спинномозговые нервы. В B. Roesch, L. Elfers, K. Trost, et al. (Ред.), Основы анатомии и физиологии (стр. 443-468). Нью-Джерси: John Wiley & Sons, Inc.
  15. ^ Фитцпатрик, Д. (2001) Цепи нижних моторных нейронов и управление моторами: Обзор. В D. Purves, G.J. Августин, Д. Фитцпатрик и др. (Ред.), Неврология. Полученное из «Архивная копия». В архиве из оригинала 2018-06-05. Получено 2017-11-30.CS1 maint: заархивированная копия как заголовок (ссылка на сайт)
  16. ^ а б «ГЛАВА ДЕВЯТАЯ». www.unc.edu. В архиве из оригинала на 2017-11-05. Получено 2017-12-08.
  17. ^ Сильверторн, Ди Англауб (2010). Физиология человека: комплексный подход. Пирсон. п. 398. ISBN  978-0-321-55980-7.
  18. ^ а б Тортора, Дж. Дж., Дерриксон, Б. (2011). Мышечная ткань. В B. Roesch, L. Elfers, K. Trost, et al. (Ред.), Основы анатомии и физиологии (стр. 305-307, 311). Нью-Джерси: John Wiley & Sons, Inc.
  19. ^ а б c d Purves D, Augustine GJ, Fitzpatrick D и др., Редакторы: Neuroscience. 2-е издание, 2001 г. «Архивная копия». В архиве из оригинала 2018-06-05. Получено 2017-09-05.CS1 maint: заархивированная копия как заголовок (ссылка на сайт)
  20. ^ а б c d е Мануэль, Марин; Житницкий, Даниэль (2011). «Альфа, бета и гамма мотонейроны: функциональное разнообразие на последнем пути двигательной системы». Журнал интегративной неврологии. 10 (3): 243–276. Дои:10.1142 / S0219635211002786. ISSN  0219-6352. PMID  21960303.

Источники

  • Шервуд, Л. (2001). Физиология человека: от клеток к системам (4-е изд.). Пасифик Гроув, Калифорния: Брукс-Коул. ISBN  0-534-37254-6.
  • Marieb, E.N .; Маллатт, Дж. (1997). Человеческая анатомия (2-е изд.). Менло-Парк, Калифорния: Бенджамин / Каммингс. ISBN  0-8053-4068-8.

Рассмотрена иннервация скелетной мышцы. Описан состав и строение нейрона, а также функции нейрона. Рассмотрены функции двигательных, чувствительных и вегетативных нейронов. Описан состав периферического нерва. Введено понятие двигательной единицы и концевой пластинки (синапса).

строение периферического нерва

Иннервация скелетной мышцы

Определения

Иннервация (от  in — в, внутри и nervus — нервы) — снабжение органов и тканей нервами, что обеспечивает их связь с центральной нервной системой (ЦНС).

Иннервация скелетной мышцы — это  наличие нервных волокон, которые передают импульсы из ЦНС к мышце и от мышцы в ЦНС.

Денервация скелетной мышцы — нарушение передачи импульсов из ЦНС к мышце или от мышцы в ЦНС. Денервация мышечных волокон  возможна из-за перерезки или повреждения нерва. Денервация мышечных волокон происходит также по мере старения из-за уменьшения количества нервных волокон, иннервирующих скелетную мышцу.

Теперь рассмотрим этот вопрос подробнее. Давайте сначала разберемся, что представляет собой нейрон.

Нейрон

Нейрон – это структурная единица нашей нервной системы, главная функция которого – передача информации от одного участка тела другому. Чтобы передать информацию нейрон возбуждается, затем вырабатывает нервный импульс. Нейроны также участвуют в обработке и хранении информации. Но этого вопроса мы касаться не будем.

Нейрон

Рис.1. Нейрон

Нейрон – это высокоспециализированная клетка. Он состоит из тела и длинного отростка – аксона (рис. 1.).

Длина аксона может достигать одного метра и более. На теле есть много мелких отростков – дендритов. Через эти отростки нейрон получает информацию от других нейронов и передает ее через аксон или другому нейрону, или органу, к которому он подходит (в нашем случае – мышце).

Периферический нерв

Скелетные мышцы иннервируются одним или несколькими периферическими нервами. За несколькими исключениями (лицевой и подъязычный нерв) все периферические нервы являются смешанными. Смешанный периферический нерв в своем составе содержит:

  • двигательные волокна (нейроны); 
  • чувствительные  волокна (нейроны);
  • вегетативные волокна (нейроны).

Когда мы рассматривали строение скелетной мышцы, то указывалось, что периферические нервы имеют каналы в перимизии. Через эти каналы периферические нервы подходят к мышечным волокнам.

Двигательные волокна (нейроны)

Двигательные нейроны (мотонейроны) несут информацию от ЦНС к мышце. Тела мотонейронов расположены в передних рогах спинного мозга. Аксоны мотонейронов идут к мышцам в составе периферического нерва.

Двигательные нейроны делятся на два типа: α-мотонейроны (альфа-мотонейроны) и γ-мотонейроны (гамма-мотонейроны).

  • α-мотонейроны иннервируют мышечные волокна. Через α-мотонейроны к мышечному волокну поступают импульсы из центральной нервной системы (ЦНС) в результате которых мышечное волокно развивает возбуждение (сокращается).
  • γ-мотонейроны иннервируют мышечные веретена (рецепторы мышц). Эти мотонейроны иннервируют особые мышечные волокна (интрафузальные), расположенные внутри мышечных веретен. Напряжение и расслабление интрафузальных волокон изменяет чувствительность рецептора — мышечного веретена. Благодаря этому происходит более «тонкое» управление движениями.  За открытие этого механизма шведский нейрофизиолог Рагнар Гранит был удостоен Нобелевской премии.

Один α-мотонейрон иннервирует (то есть пускает веточки) достаточно много мышечных волокон. Иногда на один аксон приходится более 2000 мышечных волокон. Такая система, состоящая из одного нейрона и мышечных волокон, которые он иннервирует, называется двигательной единицей (ДЕ). Это понятие ввел в физиологию нобелевский лауреат Чарльз Скотт Шеррингтон в начале XX века. Особенности состава и функционирования ДЕ мы рассмотрим позднее.

Место, где аксон α-мотонейрона соединяется с мышечным волокном называется концевой пластинкой (синапсом). Через синапс к мышечному волокну из ЦНС (центральной нервной системы)  поступают сигналы, которые вызывают его возбуждение.

Чувствительные волокна (нейроны)

Чувствительные волокна несут в ЦНС информацию о различных показателях активности мышцы (длине мышцы, скорости ее сокращения, степени напряжения). Если бы ЦНС не могла получать эту информацию, управление напряжением мышцы было бы невозможно. Точно так же было бы невозможно управление нашими движениями.  Тела чувствительных нейронов расположены в задних рогах спинного мозга.

Чувствительные нейроны либо заканчиваются свободными нервными окончаниями, либо иннервируют рецепторы скелетных мышц (мышечные веретена и рецепторы сухожилий).

  • Свободные нервные окончания называются ноцицепторами. Они расположены между мышечными волокнами и несут в ЦНС информацию о боли.
  • От мышечных веретен отходят чувствительные нейроны (Ia-афференты), несущие в ЦНС информацию о длине и скорости сокращения скелетной мышцы.
  • От сухожильных рецепторов отходят чувствительные нейроны (Ib-афференты), несущие в ЦНС информацию о напряжении скелетной мышцы.

Вегетативные волокна (нейроны)

Вегетативные нейроны иннервируют гладкие мышцы стенок кровеносных сосудов скелетных мышц.

Влияние старения на иннервацию скелетных мышц

Иннервация скелетных мышц пожилых людей ухудшается. Ученые находят, что с возрастом уменьшается количество α-мотонейронов, иннервирующих скелетную мышцу. Это является одним из факторов, обусловливающих возрастное уменьшение массы скелетных мышц и их силы — саркопению.

Литература

  1. Ванек, Ю. Спортивная анатомия.– М.: Академия, 2008.- 304 с.
  2. Мак-Комас, А.Дж. Скелетные мышцы.– Киев: Олимпийская литература, 2001.– 407 с.
  3. Мышцы в спорте. Анатомия. Физиология. Тренировка. Реабилитация. — М.: Практическая медицина, 2016.- 408 с. (отличная книга, рекомендую!).
  4. Самсонова, А.В. Гипертрофия скелетных мышц человека. – СПб: Кинетика, 2018. – 159 с.

С уважением, А.В. Самсонова

Похожие записи:


Типы конституции женщин по И.Б. Галанту

Описана биография известного советского психиатра И.Б.Галанта, предложившего естественную систему конституциональных типов женщин. Дана характеристика предложенных И.Б.Галантом  конституциональных…


Сила тяжести

Дано определение силы тяжести. Показано, что сила тяжести является частным случаем силы гравитации. Описаны факторы, определяющие силу тяжести:…


Сила

Дано определение силы в механике. Описаны факторы, определяющие действие на тело силы: направление, точка приложения и численное значение.


Метаболический стресс. Накопление лактата в мышцах

Описан механизм влияния метаболического стресса (накопления лактата) на гипертрофию мышечных волокон. Показано, что накопление лактата приводит…


Механическое повреждение мышечных волокон

Описаны механизмы механического повреждения мышечных волокон при силовой тренировке, приводящие к гипертрофии скелетных мышц. Показано, что…


Механическое напряжение (механотрансдукция) в скелетных мышцах

Описаны процессы передачи механического напряжения в скелетных мышцах. Показано, что механическое напряжение, возникающее вследствие сокращения скелетных…


Влияние возраста и тренировки на результаты в спринтерском беге, структуру  и сократительные свойства мышц спортсменов

Изучалось влияние возраста и тренировки на результаты в спринтерском беге, структуру и сократительные свойства мышц спортсменов. Результаты…


Снижение массы скелетных мышц при старении в основном объясняется уменьшением размера мышечных волокон II типа

Снижение массы скелетных мышц при старении в основном связано с меньшим размером мышечных волокон II типа.


ДГЭА (дегидроэпиандростерон, DHEA)

Дано определение, характеристика изменения концентрации ДГЭА с возрастом. Описаны функции ДГЭА и ДГЭА (С) у молодых и пожилых…

Понравилась статья? Поделить с друзьями:
  • Тел номер леруа мерлен спб
  • Тел мегастрой набережные челны
  • Тел магазинов максидом
  • Тел магазинов леруа мерлен
  • Тел леруа мерлен челябинск